首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the growing evidence for individual variation in trophic niche within populations, its potential indirect effects on ecosystem processes remains poorly understood. In particular, few studies have investigated how intraspecific trophic variability can modulate the effects of consumers on ecosystems through potential changes in nutrient excretion rates. Here, we first quantified the level of intraspecific trophic variability in 11 wild populations of the omnivorous fish Lepomis gibbosus. Outputs from stomach content and stable isotope analyses revealed that the degree of trophic specialization and trophic positions were highly variable between and within these wild populations. There was intrapopulation variation in trophic position of more than one trophic level, suggesting that individuals consumed a range of plant and animal resources. We then experimentally manipulated intraspecific trophic variability to assess how it can modulate consumer‐mediated nutrient effects on relevant processes of ecosystem functioning. Specifically, three food sources varying in nutrient quality (e.g. plant material, macro‐invertebrate and fish meat) were used individually or in combination to simulate seven diet treatments. Results indicated that intraspecific variability in growth and nitrogen excretion rates were more related to the composition of the diet rather than the degree of specialization, and increased with the trophic position of the diet consumed. We subsequently used microcosms and showed that critical ecosystem functions, such as primary production and community respiration, were affected by the variability in excretory products, and this effect was biomass‐dependent. These results highlight the importance of considering variation within species to better assess the effects of individuals on ecosystems and, more specifically, the effects of consumer‐mediated nutrient recycling because the body size and the trophic ecology of individuals are affected by a large spectrum of natural and human‐induced environmental changes.  相似文献   

2.
Connecting geographical distributions with population processes   总被引:2,自引:0,他引:2  
The geographical distribution of a species is determined by a large number of complex processes operating over spatial scales spanning 10 orders of magnitude. Patterns in population processes have been described at numerous scales. We show that two patterns, measured at different scales, jointly allow us to infer heretofore unknown patterns in the distribution of demographic patterns across the geographical range of a species. The resulting model describes three fundamentally different modes of geographical variation in vital rates of populations. One mode is characterized by a positive nonlinear relationship between the maximum rate of population growth and the intensity of intraspecific competition across a geographical range. That is, populations that grow rapidly are also those where individuals experience the greatest per capita negative effect of the presence of other individuals. The second mode of behaviour is described by a negative nonlinear relationship between maximum growth rate and density dependence. Under this scenario, populations with low capacity to grow rapidly have highest intensities of intraspecific competitive effects. A third mode of behaviour is characterized by a weak positive relationship between growth rate and intraspecific competition, with very little geographical variation in maximum growth rate. A survey of studies relating temporal means and variances in population abundance for a variety of species indicate that the second mode of geographical variation in population dynamics across species ranges is the most common, though a few species appear to be characterized by the third mode.  相似文献   

3.
Functional traits are increasingly recognized as an integrative approach by ecologists to quantify a key facet of biodiversity. And these traits are primarily expressed as species means in previous studies, based on the assumption that the effects of intraspecific variability can be overridden by interspecific variability when studying functional ecology at the community level. However, given that intraspecific variability could also have important effects on community dynamics and ecosystem functioning, empirical studies are needed to investigate the importance of intraspecific variability in functional traits. In this study, 256 Scutiger boulengeri tadpole individuals from four different populations are used to quantify the functional difference between populations within a species, and the relative contribution of inter‐ and intrapopulation variability in functional traits. Our results demonstrate that these four populations differ significantly in functional attributes (i.e., functional position, functional richness, and low functional overlap), indicating that individuals from different populations within a species should be explicitly accounted for in functional studies. We also find similar relative contribution of inter‐ (~56%) and intrapopulation (~44%) variation to the total variability between individuals, providing evidence that individuals within populations should also be incorporated in functional studies. Overall, our results support the recent claims that intraspecific variability cannot be ignored, as well as the general idea of “individual level” research in functional ecology.  相似文献   

4.
Huss M  Persson L  Byström P 《Oecologia》2007,153(1):57-67
Size variation among individuals born at the same time in a common environment (within cohorts) is a common phenomenon in natural populations. Still, the mechanisms behind the development of such variation and its consequences for population processes are far from clear. We experimentally investigated the development of early within-cohort size variation in larval perch (Perca fluviatilis). Specifically we tested the influence of initial variation, resulting from variation in egg strand size, and intraspecific density for the development of size variation. Variation in egg strand size translated into variation in initial larval size and time of hatching, which, in turn, had effects on growth and development. Perch from the smallest egg strands performed on average equally well independent of density, whereas larvae originating from larger egg strands performed less well under high densities. We related this difference in density dependence to size asymmetries in competitive abilities leading to higher growth rates of groups consisting of initially small individuals under high resource limitation. In contrast, within a single group of larvae, smaller individuals grew substantially slower under high densities whereas large individuals performed equally well independent of density. As a result, size variation among individuals within groups (i.e. originating from the same clutch) increased under high densities. This result may be explained by social interactions or differential timing of diet shifts and a depressed resource base for the initially smaller individuals. It is concluded that to fully appreciate the effects of density-dependent processes on individual size variation and size-dependent growth, consumer feedbacks on resources need to be considered.  相似文献   

5.
Proximate factors of the intraspecific variation in molluscan shell morphology have long received attention in biology. The intertidal gastropod Monetaria annulus (Mollusca; Gastropoda; Cypraeidae) is particularly suitable for the study of variation in body size, because this species is a determinate grower in the sense that soft-body size shows no further increase after the juvenile stage. Cross-sectional field surveys on post-juvenile individuals have indicated that the mean body size varies widely among populations and is larger in females than in males within populations. To examine whether these patterns are due to genetic differences, we conducted a common-garden rearing experiment with juvenile individuals collected from two populations on Okinawa Island. After adjusting for among-individual differences in initial degree of development, statistical analyses revealed that this species exhibits female-biased sexual size dimorphism mediated by a longer development time rather than by faster growth rates in females. Although wild individuals show a remarkable size difference between populations, no size difference was found between the populations in the individuals reared in a common-garden condition. This result suggests that the among-population size difference does not have a genetic basis and is caused by phenotypic plasticity based on environmental heterogeneity among habitats.  相似文献   

6.
Life history theory emphasizes the importance of trade‐offs in how time and energy are allocated to the competing demands of growth, fecundity, and survival. However, avian studies have historically emphasized the importance of resource acquisition over resource allocation to explain geographic variation in fecundity, parental care, and offspring development. We compared the brood sizes and nestling mass and feather growth trajectories between orange‐crowned warblers Oreothlypis celata breeding in Alaska versus California, and used 24‐h video recordings to study the relationship between parental care and growth rates. Per‐offspring provisioning rates were highest in the smallest broods, and food delivery was positively correlated with nestling growth over the 24‐h period only in Alaska. Females in Alaska spent more time brooding, and juveniles there showed faster feather growth and earlier mobility compared with those in California. We also found differences in the energetic and nutritional content of insect larvae that could facilitate the observed differences in nestling growth relative to food provisioning. Our results point to the potential importance of food quality and parental provisioning of warmth, in addition to food, for explaining avian growth patterns. We highlight the need to quantify multiple dimensions of parental care and of offspring growth and development, and to better understand the relationships between feather growth, nestling period length, and fledgling mobility.  相似文献   

7.
Many invasive ants, including the Argentine ant Linepithema humile, form expansive supercolonies, within which intraspecific aggression is absent. The behavioral relationships among introduced Argentine ant populations at within-country or within-continent scales have been studied previously, but the behavioral relationships among intercontinental populations have not been examined. The present study investigated the levels of aggression among intercontinental Argentine ant populations by transporting live ants from Europe and California to Japan and conducting aggression tests against Japanese populations. Workers from the dominant supercolonies of Europe and California did not show aggressive behavior toward workers from the dominant supercolony of Japan, whereas they fought vigorously against workers from minor supercolonies. The three massive supercolonies, together with Argentine ants from Macaronesia, may be the largest non-aggressive unit formed by a social insect species in which intraspecific aggression exists. Absence or low levels of aggression at transcontinental scale, which may have derived from low genetic variation, may help introduced Argentine ants maintain expansive supercolonies. The lack of aggression implies possible frequent exchanges of individuals among the intercontinental populations mediated by human activities.  相似文献   

8.
How do we quantify patterns (such as responses to local selection) sampled across multiple populations within a single species? Key to this question is the extent to which populations within species represent statistically independent data points in our analysis. Comparative analyses across species and higher taxa have long recognized the need to control for the non-independence of species data that arises through patterns of shared common ancestry among them (phylogenetic non-independence), as have quantitative genetic studies of individuals linked by a pedigree. Analyses across populations lacking pedigree information fall in the middle, and not only have to deal with shared common ancestry, but also the impact of exchange of migrants between populations (gene flow). As a result, phenotypes measured in one population are influenced by processes acting on others, and may not be a good guide to either the strength or direction of local selection. Although many studies examine patterns across populations within species, few consider such non-independence. Here, we discuss the sources of non-independence in comparative analysis, and show why the phylogeny-based approaches widely used in cross-species analyses are unlikely to be useful in analyses across populations within species. We outline the approaches (intraspecific contrasts, generalized least squares, generalized linear mixed models and autoregression) that have been used in this context, and explain their specific assumptions. We highlight the power of ‘mixed models’ in many contexts where problems of non-independence arise, and show that these allow incorporation of both shared common ancestry and gene flow. We suggest what can be done when ideal solutions are inaccessible, highlight the need for incorporation of a wider range of population models in intraspecific comparative methods and call for simulation studies of the error rates associated with alternative approaches.  相似文献   

9.
Tiarella trifoliata comprises varietieslaciniata, trifoliata, andunifoliata, and is distributed from southeastern Alaska to northern California. We analyzed restriction site variation of chloroplast DNA (cpDNA) using 23 endonucleases in 76 populations representing the entire geographic range of the species and the three recognized varieties. We also employed comparative restriction site mapping of PCR-amplified chloroplast DNA fragments using 16 restriction endonucleases. This species exhibits low cpDNA restriction site variation. No differentiation is evident among varieties of this species based on cpDNA data; some plants of each variety were characterized by each of the two major cpDNA types detected. The two major cpDNA clades, which differ by only a single restriction site mutation, are geographically structured. A northern clade comprises populations from Alaska to central Oregon; most populations analyzed from southern Oregon and California form a southern clade. Populations that possess the typical northern cpDNA type also occur disjunctly to the south at high elevations in the Siskiyou—Klamath Mountain area of southern Oregon and northern California. Conversely, the southern cpDNA type is found disjunctly to the north in the Olympic Peninsula of Washington. Both geographic areas characterized by disjunct cytoplasms are considered glacial refugia.Tiarella trifoliata joins two other species,Tolmiea menziesii andTellima grandiflora, in having well-demarcated northern and southern cpDNA lineages. All three species have similar life-history traits and geographic distributions. We suggest that glaciation may have played a major role in the formation of the cpDNA discontinuities present in these three taxa. The pronounced relationship between cpDNA variation and geographic distribution suggests the potential applicability of intraspecific phylogeography to plants via the analysis of intraspecific cpDNA variation. These three examples also join a rapidly growing data base which indicates that cytoplasms are often geographically structured within species and species complexes.  相似文献   

10.
1. We used direct observation and mark‐recapture techniques to quantify movements by mottled sculpins (Cottus bairdi) in a 1 km segment of Shope Fork in western North Carolina. Our objectives were to: (i) quantify the overall rate of sculpin movement, (ii) assess variation in movement among years, individuals, and sculpin size classes, (iii) relate movement to variation in stream flow and population size structure, and (iv) quantify relationships between movement and individual growth rates. 2. Movements were very restricted: median and mean movement distances for all sculpin size classes over a 45 day period were 1.3 and 4.4 m respectively. Nevertheless, there was a high degree of intrapopulation and temporal variation in sculpin movement. Movement of juveniles increased with discharge and with the density of large adults. Movement by small and large adults was not influenced by stream flow, but large adults where more mobile when their own density was high. Finally, there were differences in the growth rates of mobile and sedentary sculpins. Mobile juveniles grew faster than sedentary individuals under conditions of low flow and high density of large adults, whereas adults exhibited the opposite pattern. 3. Our results support the hypothesis that juvenile movement and growth is influenced by both intraspecific interactions with adults and stream flow. In contrast, adult movement appears to be influenced by competitive interactions among residents for suitable space. The relationship between movement and growth may provide a negative feedback mechanism regulating mottled sculpin populations in this system.  相似文献   

11.
The complex topography and climate history of western North America offer a setting where lineage formation, accumulation and migration have led to elevated inter‐ and intraspecific biodiversity in many taxa. Here, we study Ramalina menziesii, an epiphytic lichenized fungus with a range encompassing major ecosystems from Baja California to Alaska to explore the predictions of two hypotheses: (i) that the widespread distribution of R. menziesii is due to a single migration episode from a single lineage and (ii) that the widespread distribution is due to the formation and persistence of multiple lineages structured throughout the species' range. To obtain evidence for these predictions, we first construct a phylogenetic tree and identify multiple lineages structured throughout the species' range – some ancient ones that are localized and other more recent lineages that are widely distributed. Second, we use an isolation with migration model to show that sets of ecoregion populations diverged from each other at different times, demonstrating the importance of historical and current barriers to gene flow. Third, we estimated migration rates among ecoregions and find that Baja California populations are relatively isolated, that inland California ecoregion populations do not send out emigrants and that migration out of California coastal and Pacific Northwest populations into inland California ecoregions is high. Such intraspecific geographical patterns of population persistence and dispersal both contribute to the wide range of this genetically diverse lichen fungus and provide insight into the evolutionary processes that enhance species diversity of the California Floristic Province.  相似文献   

12.
1. Margaritifera hembeli is a threatened mussel limited to twenty-two headwater streams in the Red River drainage in central Louisiana, USA. This study evaluated intraspecific variation in density, growth, size and age structure and shell morphology among several isolated populations. This study also identified the host fish and considered the role that host fish distribution played in determining mussel recruitment. 2. Mussels were aggregated in beds and average densities differed among streams. However, maximum mussel densities in beds were similar in all streams; the observed maxima were among the largest for monospecific mussel beds in North America, often exceeding 300 individuals m–2. 3. The maximum size reached by individuals differed among streams, but all size distributions were skewed towards larger individuals. A repeated measures analysis of tagged mussels in four populations, over a 2-year period, indicated 2-fold differences in growth rates among streams, and significant variation among years. Growth rates were not affected by local population density. Maximum ages reached, determined indirectly by comparing growth rates, varied from 45 to 75 years. A canonical discriminant analysis also revealed significant differences in shell morphology across populations. 4. Half of the populations showed evidence of recent recruitment, and these sites had fish assemblages dominated by the host fish Noturus phaeus (Taylor). Host fish abundance appeared more important than adult mussel density in explaining recruitment patterns. 5. Considerable intraspecific life history variation suggests that management strategies for this species should be stream-specific, with emphasis on ensuring long-term habitat stability.  相似文献   

13.
Size variance among similarly aged individuals within populations is a pattern common to many organisms that is a result of interactions between intrinsic and extrinsic traits of individuals. While genetic and maternal effects, as well as physiological and behavioral traits have been shown to contribute to size variation in animal populations, teasing apart the influence of such factors on individual growth rates remain a challenge. Furthermore, tracing the effects of these interactions across life stages and in shaping adult phenotypes also requires further exploration. In this study we investigated the relationship between genetics, hatching patterns, behaviors, neuroendocrine stress axis activity and variance in growth and metamorphosis among same-aged larval amphibians. Through parallel experiments we found that in the absence of conspecific interactions, hatch time and to a lesser extent egg clutch identity (i.e. genetics and maternal effects) influenced the propensity for growth and development in individual tadpoles and determined metamorphic traits. Within experimental groups we found that variance in growth rates was associated with size-dependent foraging behaviors and responses to food restriction. We also found an inverse relationship between glucocorticoid (GC) hormone levels and body mass and developmental stage among group-reared tadpoles, which suggests that GC expression plays a role in regulating differing within-population growth trajectories in response to density-dependent conditions. Taken together these findings suggest that factors that influence hatching conditions can have long-term effects on growth and development. These results also raise compelling questions regarding the extent to which maternal and genetic factors influence physiological and behavioral profiles in amphibians.  相似文献   

14.
Reviews of hatching asynchrony in birds recommended more studies on intraspecific variation in the extent of hatching asynchrony. We examined intraspecific variation in clutch size, laying chronology, onset of incubation, incubation period, and hatching asynchrony in burrowing owls (Athene cunicularia) in the Imperial Valley of California. Mean clutch size was 7.4 eggs and owls averaged 0.5 eggs laid per day. Females varied considerably in laying interval and onset of incubation (range?=?1st to 9th egg in the clutch). The mean incubation period was 21.9?days. Hatching interval also varied greatly among females ( $ \overline{x} $ ?=?0.8, range 0.1–2.0?days between successively hatched eggs). Past burrowing owl studies have largely overlooked the substantial intraspecific variation in these traits or have reported estimates that differ from ours. Future studies designed to identify the environmental factors that explain the large intraspecific variation in these traits will likely provide insights into the constraints on local abundance.  相似文献   

15.
We estimated linear (β) and nonlinear (γ) selection gradients to quantify host plant‐mediated selection on the trait gall size in each of 22 unequally sampled subpopulations of the cynipid gall wasp Belonocnema treatae. We characterized the relationship between variation in subpopulation sample size and the magnitude of and the variance among selection gradients. We then tested the hypothesis that the intraspecific patterns we observed would follow two patterns that have emerged from published estimates of linear and nonlinear selection gradients compiled across species, namely that the average magnitude of β and γ and the variance among estimated β and γ decrease with increasing sample size. For both β and γ, intraspecific patterns of phenotypic selection in relation to sample size were not predicted by interspecific patterns. Thus, our results suggest that when selection is heterogeneous among subpopulations, variation in the biological basis for selection is more important in influencing estimates of selection than is variation in study size. Our study highlights the value of inspecting selection in relation to sampling effort at the level at which understanding the sources of variation in selection is most important, among populations within species.  相似文献   

16.
We consider effects of competition for space in a heterogeneous environment, making use of nonlinear interaction-diffusion equations. Competition for space is assumed to mean mutual repulsive interactions that force other individuals to disperse from a crowded region. In other words, we are concerned with density-dependent dispersal forced by population pressures. Spatial heterogeneity is incorporated in the growth rates, and the environment is assumed to have a favorable habitat for two populations surrounded by largely hostile regions. Space-independent migration rates are assumed. We ignore the usual density-dependence in the growth rates to focus our attention on density-dependence in the migration rates. Our main conclusion is that two populations can coexist if the interspecific repulsive forces are weaker than the intraspecific ones. It is also emphasized that density-dependent dispersal in a heterogeneous environment is not always a stabilizing agent, and that either of two populations may become extinct by competition for space. Finally, the resemblance of our results to those from Lotka-Volterra competition equations is suggested.  相似文献   

17.
In most ecological studies, within-group variation is a nuisance that obscures patterns of interest and reduces statistical power. However, patterns of within-group variability often contain information about ecological processes. In particular, such patterns can be used to detect positive growth autocorrelation (consistent variation in growth rates among individuals in a cohort across time), even in samples of unmarked individuals. Previous methods for detecting autocorrelated growth required data from marked individuals. We propose a method that requires only estimates of within-cohort variance through time, using maximum likelihood methods to obtain point estimates and confidence intervals of the correlation parameter. We test our method on simulated data sets and determine the loss in statistical power due to the inability to identify individuals. We show how to accommodate nonlinear growth trajectories and test the effects of size-dependent mortality on our method''s accuracy. The method can detect significant growth autocorrelation at moderate levels of autocorrelation with moderate-sized cohorts (for example, statistical power of 80% to detect growth autocorrelation ρ 2 = 0.5 in a cohort of 100 individuals measured on 16 occasions). We present a case study of growth in the red-eyed tree frog. Better quantification of the processes driving size variation will help ecologists improve predictions of population dynamics. This work will help researchers to detect growth autocorrelation in cases where marking is logistically infeasible or causes unacceptable decreases in the fitness of marked individuals.  相似文献   

18.
Data from cranial specimens of adult E. jubatus were analyzed to compare intraspecific morphology of skulls. Males and females were grouped separately to avoid bias from sexual dimorphism. Geographic variation was observed in adult male E. jubutus , indicating the potential presence of three morphologically disparate groups: those from Alaska, those from California, and those from Japan and Russia. Although sample sizes were small, results from cluster and discriminant function analyses indicated that specimens from eastern and western Alaska were morphologically similar, and that the most divergent specimens for the species appeared to be those from Japan. Skulls from Alaska possessed a typically longer, less robust skull, whereas those from Japan appeared smaller, yet most robust. Skulls from California were intermediate.  相似文献   

19.
Schierenbeck KA  Phipps F 《Genetica》2010,138(11-12):1161-1169
Howellia aquatilis A.Gray (water howellia) is a federally-listed threatened aquatic plant species with limited distribution in four states: California, Idaho, Montana, and Washington. Previous studies have shown a lack of genetic variation within the species; these studies, however, have excluded samples from one or more states. There have been no published studies on the population biology or genetics of the six known California populations or their evolutionary relationship to the other Pacific Northwest populations. We used Amplified Fragment Length Polymorphisms to identify genetic variation within and among the California populations, and to compare the California populations to the Idaho, Montana, and Washington populations. Analysis of molecular variance of 92 individuals from the six California populations show that 83.8% of genetic variation is found within populations and 16.2% among populations (P < 0.001). All sampled populations from all states provide 83.7% variation within and 16.3% variation among populations (P < 0.001). A UPGMA analysis confirms there is no clear clustering of Howellia aquatilis populations within California, that the Montana populations cluster within the California populations, and, although with limited population sample sizes, the Idaho and Washington populations are distantly related to all other populations. Waterfowl migration patterns support a hypothesis for avian dispersal as a primary factor in gene flow in Howellia aquatilis.  相似文献   

20.
Countergradient variation in norms of reaction can dampen the direct effects of environmental influences on phenotypic traits, allowing phenotypic similarity among populations despite exposure to different environmental conditions. Such norms of reaction may occur at any phase of the life‐history (e.g. growth rates during both embryonic and postembryonic stages may influence geographical variation in adult body size). We collected gravid female lizards (Sceloporus undulatus) from northern (Indiana), central (Mississippi), and southern (Florida) populations, spanning almost the full latitudinal range of the species. Adult females from the southern population were smaller. Intrinsic growth rates of hatchlings were higher for the central population than for the other two populations. This pattern does not parallel the countergradient variation previously found in embryonic developmental rates among these populations. Earlier hatching enhanced survival rates of juveniles to a similar degree among populations, although juvenile survival rates in the field generally increase with latitude in this species. Our data reveal geographical variation in the ways in which intrinsic developmental/growth rates and survival shift during ontogeny, and suggest that latitudinal patterns in adult body size (such as Bergmann's rule) can result from both faster growth, and longer periods of growth. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 202–209.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号