首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earthworms are globally distributed and perform essential roles for soil health and microbial structure. We have investigated the effect of an anthropogenic contamination gradient on the bacterial community of the keystone ecological species Lumbricus rubellus through utilizing 16S rRNA pyrosequencing for the first time to establish the microbiome of the host and surrounding soil. The earthworm‐associated microbiome differs from the surrounding environment which appears to be a result of both filtering and stimulation likely linked to the altered environment associated with the gut micro‐habitat (neutral pH, anoxia and increased carbon substrates). We identified a core earthworm community comprising Proteobacteria (~50%) and Actinobacteria (~30%), with lower abundances of Bacteroidetes (~6%) and Acidobacteria (~3%). In addition to the known earthworm symbiont (Verminephrobacter sp.), we identified a potential host‐associated Gammaproteobacteria species (Serratia sp.) that was absent from soil yet observed in most earthworms. Although a distinct bacterial community defines these earthworms, clear family‐ and species‐level modification were observed along an arsenic and iron contamination gradient. Several taxa observed in uncontaminated control microbiomes are suppressed by metal/metalloid field exposure, including eradication of the hereto ubiquitously associated Verminephrobacter symbiont, which raises implications to its functional role in the earthworm microbiome.  相似文献   

2.
It has been found that nitrogenase activity in the guts and coprolites of three earthworm species (Lumbricus terrestris, Aporrectodea rosea, and Aporrectodea caliginosa) is one to three orders of magnitude higher than that in the control soil. In A. caliginosa earthworms, the actual nitrogenase activity remains high upon keeping them in soils of different types. However, it reaches a peak in the gut lumen and decreases to a minimum on its wall, which is evidence for a major role of transitional microflora in intestinal nitrogen fixation. Nitrogen fixation activity in freshly excreted coprolites decreases to one-half or one-third of that in the gut and then increases again, reaching a peak on days 3–5 of exposure in the soil. According to the results of multisubstrate testing, the functional diversity of nitrogen-fixing soil microorganisms increases in the course of passage through the earthworm gut. Thus, the microbial community in coprolites retains its functional potential and, within a few days, shows the second peak of activity in the soil. Due to a short-term increase in the rate of nitrogen fixation, coprolites contain a pool of bound amino acids, which become involved in the formation of new humus substances.  相似文献   

3.
Cellulose is the most abundant polymer in nature and constitutes a large pool of carbon for microorganisms, the main agents responsible for soil organic matter decomposition. Cellulolysis occurs as the result of the combined action of fungi and bacteria with different requirements. Earthworms influence decomposition indirectly by affecting microbial population structure and dynamics and also directly because the guts of some species possess cellulolytic activity. Here we assess whether the earthworm Eisenia fetida (Savigny 1826) digests cellulose directly (i.e., with its associated gut microbiota) and also whether the effects of E. fetida on microbial biomass and activity lead to a change in the equilibrium between fungi and bacteria. By enhancing fungal communities, E. fetida would presumably trigger more efficient cellulose decomposition. To evaluate the role of E. fetida in cellulose decomposition, we carried out an experiment in which pig slurry, a microbial-rich substrate, was treated in small-scale vermireactors with and without earthworms. The presence of earthworms in vermireactors significantly increased the rate of cellulose decomposition (0.43 and 0.26% cellulose loss day−1, with and without earthworms, respectively). However, the direct contribution of E. fetida to degradation of cellulose was not significant, although its presence increased microbial biomass (Cmic) and enzyme activity (cellulase and β-glucosidase). Surprisingly, as fungi may be part of the diet of earthworms, the activity of E. fetida triggered fungal growth during vermicomposting. We suggest that this activation is a key step leading to more intense and efficient cellulolysis during vermicomposting of organic wastes.  相似文献   

4.
Liu D  Lian B  Wang B  Jiang G 《PloS one》2011,6(12):e28803

Background

Earthworms are an ecosystem''s engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear.

Methodology/Principal Findings

In this report, we show earthworms'' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO3-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms'' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms'' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms'' gut had similarity in microbial community, respectively.

Conclusions/Significance

Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals.  相似文献   

5.
蚯蚓肠道是微生物多样性的一个潜在存储库。砷对蚯蚓肠道微生物群落的影响已被证实,但砷在不同蚯蚓肠道菌群中生物转化的差异仍不清楚。为了进一步阐述土壤中广泛存在的低浓度砷(浓度为5,15,25 mg/kg)对不同种类蚯蚓肠道微生物影响的差异,将4种典型蚯蚓暴露于砷污染土壤后,测定其肠道微生物组成变化,并分析砷对不同蚯蚓肠道内砷富集、形态和砷生物转化基因的影响。结果显示,所有蚯蚓组织内均存在明显的砷富集,其富集系数由高到低依次为:安德爱胜蚓(1.93)>加州腔蚓(0.80)>通俗腔蚓(0.78)>湖北远盲蚓(0.52),蚯蚓组织和肠道内砷形态主要以无机砷为主,其中As(III)含量比例> 80%,部分蚯蚓组织内还发现少量有机砷。4种蚯蚓肠道微生物群落在门水平上主要以变形菌、厚壁菌和放线菌为主,并与周围土壤细菌群落组成存在显著差异。同时,在土壤和肠道内共检测到17个砷转化基因,其中蚯蚓肠道内As(V)还原和砷转运相关基因相对丰度较高,而砷(去)甲基化基因丰度较低。此外,低浓度砷污染对蚯蚓生长无显著影响,却能引起蚯蚓肠道微生物群落的紊乱。蚯蚓种类和砷污染是引起蚯蚓肠道微生物...  相似文献   

6.
The reaction of soil bacteria and fungi to the digestive fluid of the earthworm Aporrectodea caliginosa was studied. The fluid was obtained by centrifugation of the native enzymes of the digestive tract. The inhibition of growth of certain bacteria, spores, and fungal hyphae under the effect of extracts from the anterior and middle sections of the digestive tract of A. caliginosa was discovered for the first time. In bacteria, microcolony formation was inhibited as early as 20–30 s after the application of the gut extracts, which may indicate the nonenzymatic nature of the effect. The digestive fluid exhibited the same microbicidal activity whether the earthworms were feeding on soil or sterile sand. This indicates that the microbicidal agents are formed within the earthworm’s body, rather than by soil microorganisms. The effect of the digestive fluid from the anterior and middle divisions is selective in relation to different microorganisms. Of 42 strains of soil bacteria, seven were susceptible to the microbicidal action of the fluid (Alcaligenes faecalis 345-1, Microbacterium sp. 423-1, Arthrobacter sp. 430-1, Bacillus megaterium 401-1, B. megaterium 413-1, Kluyvera ascorbata 301-1, Pseudomonas reactans 387-2). The remaining bacteria did not die in the digestive fluid. Of 13 micromycetes, the digestive fluid inhibited spore germination in Aspergillus terreus and Paecilomyces lilacinus and the growth of hyphae in Trichoderma harzianum and Penicillium decumbens. The digestive fluid stimulated spore germination in Alternaria alternata and the growth of hyphae in Penicillium chrysogenum. The reaction of the remaining micromycetes was neutral. The gut fluid from the posterior division of the abdominal tract did not possess microbicidal activity. No relation was found between the reaction of microorganisms to the effects of the digestive fluid and the taxonomic position of the microorganisms. The effects revealed are similar to those shown earlier for millipedes and wood lice in the following parameters: quick action of the digestive fluid on microorganisms, and the selectivity of the action on microorganisms revealed at the strain level. The selective effect of the digestive gut fluid of the earthworms on soil microorganisms is important for animal feeding, maintaining the homeostasis of the gut microbial community, and the formation of microbial communities in soils.  相似文献   

7.
蚯蚓对废纸屑再利用及养分贫瘠土壤综合质量的影响   总被引:1,自引:0,他引:1  
办公废纸屑作为常见有机废弃物,由于体积小且转化为再生纸成本高,因而再利用很难。但其含有大量有机碳(特别是纤维素)可能有助于退化土壤修复。蚯蚓对土壤有机质分解和其他土壤功能有重要影响,办公废纸屑和蚯蚓共同作用如何影响养分贫瘠土壤质量至今未知。研究以赤子爱胜蚓为接种蚯蚓,将办公废纸屑添加到养分贫瘠土壤中,分别设置纯土壤培养为对照组(S)、单独添加废纸屑(SP)、单独接种赤子爱胜蚓(SE)和添加废纸屑并接种赤子爱胜蚓的处理(SPE),比较培养90 d后各处理理化指标(pH、有机碳、全氮、全磷、全钾、碱解氮、速效磷、速效钾、交换性阳离子钾、钠、钙、镁等)、微生物磷脂脂肪酸(PLFAs)总含量和微生物结构的差异,在此基础上综合评价土壤质量,阐明废纸屑和赤子爱胜蚓在养分贫瘠土壤改良修复中的作用。结果显示:SPE处理较SP处理显著提高废纸屑的分解率89.48%。与对照相比,SP处理能够显著提高土壤pH值2.94个单位,SPE处理能够使其维持在中性水平;前者显著提高土壤有机碳(SOC)125.76%,交换性钠钙镁(NaEx、CaEx、MgEx  相似文献   

8.
The taxonomic structure of yeast communities was studied in forest litter and soil, as well as in substrates transformed by the activity of Lumbricus terrestris earthworms (leaves in heaps, the gut contents, and coproliths). The activity of L. terrestris has a weak effect on the total yeast abundance but results in substantial changes in the community taxonomic composition. The share of ascomycetous yeasts is significantly higher in the substrates associated with the activity of earthworms. The teleomorphic ascomycetes Williopsis saturnus were isolated from the gut contents. The effect of earthworms on the composition of the yeast community in the process of forest litter destruction is more pronounced than seasonal changes.  相似文献   

9.
It is generally accepted that human activities are responsible for the dispersal of exotic earthworms in northeastern North America. We know little, however, about the relative effects of concurrent human activities on the structure of these earthworm communities in protected forest areas, nor on their impacts on soil biological activities. Our first objective was to infer the relative importance of recreational fishing and road traffic on the structure of Lumbricidae communities in Mont-Tremblant National Park, the oldest conservation area in the province of Quebec, Canada. Our second objective was to test the relationship between earthworm species abundances and soil properties related to microbial and nitrogen dynamics. We sampled earthworm communities around 61 lakes, which included 23 heavily-fished lakes and 20 non-fished lakes located near roads, as well as 18 non-fished lakes located in remote areas of the park. Our results revealed that fishing and proximity to roads both have a positive effect on the abundance of earthworms, as does the soil pH. Fishing activities had a greater effect than road proximity on the abundance and diversity of earthworm communities, notably on the abundance of the anecic species Lumbricus terrestris. To assess at a finer scale the effects of earthworm community structure on soil microbial and nitrogen dynamics, we collected and analyzed soils from 47 sampling points around two lakes with high earthworm densities. Exploratory redundancy analysis found a negative correlation between epigeic and anecic earthworm species, with the former correlating positively to microbial biomass and the latter correlating positively to nitrification and denitrification. Confirmatory path analysis established a positive indirect effect of Lumbricus terrestris, the preferred fishing bait, on potential soil nitrous oxide emissions. We conclude that the human-mediated dispersion of earthworms in the most pristine ecosystems of Quebec affects ecosystem functioning and thus requires a review of current policies regarding the use of live-bait by fishermen.  相似文献   

10.
Patients with Parkinson’s disease (PD) often have non-motor symptoms related to gastrointestinal (GI) dysfunction, such as constipation and delayed gastric emptying, which manifest prior to the motor symptoms of PD. Increasing evidence indicates that changes in the composition of the gut microbiota may be related to the pathogenesis of PD. However, it is unclear how GI dysfunction occurs and how gut microbial dysbiosis is caused. We investigated whether a neurotoxin model of PD induced by chronic low doses of MPTP is capable of reproducing the clinical intestinal pathology of PD, as well as whether gut microbial dysbiosis accompanies this pathology. C57BL/6 male mice were administered 18 mg/kg MPTP twice per week for 5 weeks via intraperitoneal injection. GI function was assessed by measuring the 1-h stool frequency and fecal water content; motor function was assessed by pole tests; and tyrosine hydroxylase and alpha-synuclein expression were analyzed. Furthermore, the inflammation, intestinal barrier and composition of the gut microbiota were measured. We found that MPTP caused GI dysfunction and intestinal pathology prior to motor dysfunction. The composition of the gut microbiota was changed; in particular, the change in the abundance of Lachnospiraceae, Erysipelotrichaceae, Prevotellaceae, Clostridiales, Erysipelotrichales and Proteobacteria was significant. These results indicate that a chronic low-dose MPTP model can be used to evaluate the progression of intestinal pathology and gut microbiota dysbiosis in the early stage of PD, which may provide new insights into the pathogenesis of PD.  相似文献   

11.

Background

Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested.

Methodology/Principal Findings

To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus.

Conclusions/Significance

Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community diversity and/or function.  相似文献   

12.
The cultured aerobic copiotrophic bacteria and fungi from food-free digestive tracts of Aporrectodea caliginosa, Lumbricus terrestris, and Eisenia fetida earthworms, soil (compost), and fresh earthworm excrements were investigated. The microorganisms were isolated on nutrient media and identified by sequencing the fragments of bacterial 16S rRNA and fungal 28S rRNA (D1/D2 domain) gene sequences with subsequent phylogenetic analysis. Bacteria isolated from the digestive tracts of earthworms belonged to the families Aeromonadaceae, Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae, Moraxellaceae, Pseudomonadaceae, and Sphingobacteriaceae (Bacteroidetes), as well as Actinobacteria. For five strains, namely Ochrobactrum sp. 341-2 (α-Proteobacteria), Massilia sp. 557-1 (β-Proteobacteria), Sphingobacterium sp. 611-2 (Bacteroidetes), Leifsonia sp. 555-1, and a bacterium from the family Microbacteriaceae, isolate 521-1 (Actinobacteria), the similarity to known 16S rRNA sequences was 93–97%; they therefore, probably belong to new species and genera. Bacterial groups isolated from the digestive tracts of earthworms were significantly different from those isolated from soil and excrements. Some bacterial taxa occurred in different sections of A. caliginosa intestine and in intestines of different earthworm species; however, the overall composition of bacterial communities in these objects is different. Existence of bacterial groupings symbiotically associated with intestines is proposed. Among the fungi, Bjerkandera adusta and Syspastospora parasitica were isolated from the cleaned digestive tracts as light-colored, sterile mycelium, as well as Geotrichum candidum, Acremonium murorum (A. murorum var. felina), Alternaria alternata, Aspergillus candidus, A. versicolor, Cladosporium cladosporioides, Rhizomucor racemosus, Mucor hiemalis, Fusarium (F. oxysporum, Fusarium sp.), and Penicillium spp. These fungi survive for a long time in the earthworm’s digestive environment. Investigation of the functional characteristics and role in the host organism is required to confirm the symbiotic status of the microorganisms associated with the earthworm digestive tract.  相似文献   

13.
Social corbiculate bees such as honey bees and bumble bees maintain a specific beneficial core microbiome which is absent in wild bees. It has been suggested that maintaining this microbiome can prevent disease and keep bees healthy. The main aim of our study was to identify if there are any core bacterial groups in the non-corbiculate bees Ceratina and Megalopta that have been previously overlooked. We additionally test for associations between the core bee microbes and pollen provisions to look for potential transmission between the two. We identify three enterotypes in Ceratina samples, with thirteen core bacterial phylotypes in Ceratina females: Rosenbergiella, Pseudomonas, Gilliamella, Lactobacillus, Caulobacter, Snodgrassella, Acinetobacter, Corynebacterium, Sphingomonas, Commensalibacter, Methylobacterium, Massilia, and Stenotrophomonas, plus 19 in pollen (6 of which are shared by bees). Unlike Apis bees, whose gut microbial community differs compared to their pollen, Ceratina adults and pollen largely share a similar microbial composition and enterotype difference was largely explained by pollen age. Megalopta displays a highly diverse composition of microbes throughout all adults, yet Lactobacillus and Saccharibacter were prevalent in 90% of adults as core bacteria. Only Lactobacillus was both a core bee and pollen provision microbe in all three species. The consequences of such diversity in core microbiota between bee genera and their associations with pollen are discussed in relation to identifying potentially beneficial microbial taxa in wild bees to aid the conservation of wild, understudied, non-model bee species.  相似文献   

14.
The earthworm, Lumbricus rubellus, plays an essential role in soil ecosystems as it affects organic matter decomposition and nutrient cycling. By ingesting a mixture of organic and mineral material, a variety of bacteria and fungi are carried to the intestinal tract of the earthworm. To get a better understanding of the interactions between L. rubellus and the microorganisms ingested, this study tried to reveal if the diet affects the composition of the gut microflora of L. rubellus or if its intestinal tract hosts an indigenous, species-specific microbiota. A feeding experiment with L. rubellus was set up; individuals were collected in the field, transferred to a climate chamber and fed with food sources of different quality (dwarf shrub litter, grass litter or horse dung) for six weeks. DNA was extracted from the guts of the earthworms, as well as from the food sources and the surrounding soil, and further analysed by a molecular fingerprinting method, PCR-DGGE (Polymerase Chain Reaction -- Denaturing Gradient Gel Electrophoresis). We were able to demonstrate that the gut microbiota was strongly influenced by the food source ingested and was considerably different to that of the surrounding soil. Sequencing of dominant bands of the bacterial DGGE fingerprints revealed a strong occurrence of y-Proteobacteria in all gut samples, independent of the food source. A specific microflora in the intestinal tract of L. rubellus, robust against diet changes, could not be found.  相似文献   

15.
North America is home to both native and invasive earthworms acting as ecosystem engineers as they build burrows that can serve as habitat for other species or otherwise alter soil structure, affecting nutrient cycling and other ecosystem processes. Here I determine where and what earthworm species commonly occur in my study area, and compare effects of native and invasive earthworms on the common woodland salamander, Plethodon cinereus, in field surveys and laboratory experiments. The native earthworm Eisenoides carolinensis was the most common earthworm, followed by two invasive species Dendrobaena octaedra and Octolasion tyrtaeum. The presence of O. tyrtaeum was associated with a narrower O-horizon (i.e., organic layer in the soil). Using structural equation modeling to explore direct and indirect pathways of these three most common earthworm species on salamanders, I found O. tyrtaeum occurrence was negatively correlated with nighttime salamander counts, a proxy for total salamander numbers, mediated by negative effects on O-horizon depth and microinvertebrate numbers. In the laboratory, O. tyrtaeum and D. octaedra consumed more leaf litter per gram of earthworm per day than the native E. carolinensis. However, salamanders consumed earthworms and used burrows of all native and invasive species of earthworms similarly. The potential for negative indirect effects of the invasive earthworm O. tyrtaeum on P. cinereus was demonstrated both in the field and laboratory, highlighting that seemingly small differences between native and invasive ecosystem engineers have the potential to significantly alter the effects of these closely related native and invasive organisms.  相似文献   

16.
Earthworms are standard species used in soil ecotoxicology to evaluate the adverse effects of soil contaminants. This study proposes the assessment of the viability of earthworm gut microbes as an indicator in a site-specific test of soil toxicity. Using slow centrifugation, the microbial community was extracted from the guts of earthworms that had been exposed to copper (Cu)- or nickel (Ni)-contaminated soil. Microbial cell viability was assessed using calcein acetoxymethyl ester staining and flow cytometric analysis. We confirmed a metal concentration-dependent decrease in the cell viability of the gut microbial community. The general endpoints, including survival, abnormalities, coelomocyte activity, and metal bioaccumulation, showed a metal concentration-dependent response, and were strongly associated with gut microbial viability in the Ni-exposure group. In contrast, the general endpoints in the Cu-exposure group were significantly different from those in the former group, because the soil penetration rate of the earthworms was very low on the Cu-contaminated soil. Our results indicated that the gut microbial community viability assay holds potential for assessing the toxicity of soil to field worms by simply and rapidly monitoring the viability of the earthworm gut microbial community.  相似文献   

17.
Environmental metabolomics studies employing earthworms as sentinels for soil contamination are numerous, but the instability of the metabolite extracts from these organisms has been minimally addressed. This study evaluated the efficacy of adding a heat-treatment step in two commonly used extraction protocols (Bligh and Dyer and D2O phosphate buffer) as a pre-analytical stabilization method. The resulting metabolic profiles of Eisenia fetida were assessed using principal component analysis and NMR spectral evaluations. The heated Bligh and Dyer extractions produced stabilized profiles with minimal variation of the extracted metabolomic profiles over time, providing a more suitable method for metabolomic analysis of earthworm extracts.  相似文献   

18.
Non-native earthworms are a continued source of environmental change in the northeastern United States that may affect trace metals in the plant-soil system, with largely unknown effects. We assessed earthworm impacts on exchangeable and strong acid extractable (total) concentrations and pools of Al, Fe, Cu, Zn, Mo, Pb in non-point source polluted, forest soil horizons (Organic, A, and B) and foliar metals concentrations in young (<?3 years) Acer saccharum and Polystichum acrostichoides at four proximal forests in the Finger Lakes Region of New York. We observed decreasing total trace metal Organic horizon pools and increasing total trace metal A horizon concentrations as a function of increasing earthworm biomass. Earthworms had limited effects on exchangeable concentrations in A and B horizons and total metal concentrations in the B horizon. Foliar trace metal concentrations in Acer were better explained by earthworm biomass than soil concentrations but foliar concentrations for Polystichum were poorly predicted by both earthworm biomass and soil metal concentrations. Our results suggest that earthworms can affect trace metal uptake by some plants, but not by increasing soil trace metal exchangeability or from changing soil properties (pH, %SOM, or cation exchange capacity). Instead, non-native earthworms may indirectly alter understory plant uptake of trace metals.  相似文献   

19.
Four common earthworm species, the anecic Lumbricus terrestris, the endogeic Octolasion tyrteum as well as the epigeic Eisenia fetida and Dendrobaena veneta, were examined for the presence of the microbial gut symbiont Plagiotoma lumbrici. The evolutionary origin of this endobiotic microbe was reconstructed, using the 18S rRNA gene, the ITS1‐5.8S‐ITS2 region, and the first two domains of the 28S rRNA gene. Plagiotoma lumbrici was exclusively detected in the anecic Lumbricus terrestris. Multigene analyses and the ITS2 secondary structure robustly determined the phylogenetic home of Plagiotoma lumbrici populations within the oxytrichid Dorsomarginalia (Spirotrichea: Hypotrichia) as a sister taxon of the free‐living Hemiurosomoida longa. This indicates that earthworms obtained their gut endosymbiont by ingesting soil/leaf litter containing oxytrichine ciliates that became adapted to the intestinal tract of earthworms. Interestingly, according to the literature data, Plagiotoma lumbrici was detected in multiple anecic and some epigeic but never in endogeic earthworms. These observations suggest that Plagiotoma lumbrici might be adapted to certain gut conditions and the lifestyle of anecic Lumbricidae, such as Lumbricus, Aporrectodea, and Scherotheca, as well as of some co‐occurring epigeic Lumbricus species.  相似文献   

20.

Background

Appreciable evidence suggest that dysbiosis in microbiota, reflected in gut microbial imbalance plays a key role in the pathogenesis of neuropsychiatric disorders including depression and inflammatory diseases. Recently, the antidepressant properties of ketamine have gained prominence due to its fast and long lasting effects. Additional uses for ketamine in inflammatory disorders such as irritable bowel syndrome have been suggested. However, ketamine’s exact mechanism of action and potential effects on microbiome is not known. Here, we examined the effects of low dose ketamine, known to induce antidepressant effects, on stool microbiome profile in adult male Wistar rats. Animals (5/group) were injected intraperitoneally with ketamine (2.5?mg/kg) or saline, daily for 7?days and sacrificed on day 8 when intestinal stools were collected and stored at ??80?°C. DNA was extracted from the samples and the 16?S rRNA gene-based microbiota analysis was performed using 16S Metagenomics application.

Results

At genus–level, ketamine strikingly amplified Lactobacillus, Turicibacter and Sarcina by 3.3, 26 and 42 fold, respectively. Conversely, opportunistic pathogens Mucispirillum and Ruminococcus were reduced by approximately 2.6 and 26 fold, respectively, in ketamine group. Low levels of Lactobacillus and Turicibacter are associated with various disorders including depression and administration of certain species of Lactobacillus ameliorates depressive-like behavior in animal models. Hence, some of the antidepressant effects of ketamine might be mediated through its interaction with these gut bacteria. Additionally, high level of Ruminococcus is positively associated with the severity of irritable bowel syndrome (IBS), and some species of Mucispirillum have been associated with intestinal inflammation. Indirect evidence of anti-inflammatory role of Sarcina has been documented. Hence, some of the anti-inflammatory effects of ketamine and its usefulness in specific inflammatory diseases including IBS may be mediated through its interaction with these latter bacteria.

Conclusion

Our data suggest that at least some of the antidepressant and anti-inflammatory effects of daily ketamine treatment for 7?days may be mediated via its interaction with specific gut bacteria. These findings further validate the usefulness of microbiome as a target for therapeutic intervention and call for more detailed investigation of microbiome interaction with central mediators of mood and/or inflammatory disorders.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号