首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
J D Fry  S L Heinsohn  T F Mackay 《Genetics》1998,148(3):1171-1188
If genetic variation for fitness traits in natural populations ("standing" variation) is maintained by recurrent mutation, then quantitative-genetic properties of standing variation should resemble those of newly arisen mutations. One well-known property of standing variation for fitness traits is inbreeding depression, with its converse of heterosis or hybrid vigor. We measured heterosis for three fitness traits, pre-adult viability, female fecundity, and male fertility, among a set of inbred Drosophilia melanogaster lines recently derived from the wild, and also among a set of lines that had been allowed to accumulate spontaneous mutations for over 200 generations. The inbred lines but not the mutation-accumulation (MA) lines showed heterosis for pre-adult viability. Both sets of lines showed heterosis for female fecundity, but heterosis for male fertility was weak or absent. Crosses among a subset of the MA lines showed that they were strongly differentiated for male fertility, with the differences inherited in autosomal fashion; the absence of heterosis for male fertility among the MA lines was therefore not caused by an absence of mutations affecting this trait. Crosses among the inbred lines also gave some, albeit equivocal, evidence for male fertility variation. The contrast between the results for female fecundity and those for male fertility suggests that mutations affecting different fitness traits may differ in their average dominance properties, and that such differences may be reflected in properties of standing variation. The strong differentiation among the MA lines in male fertility further suggests that mutations affecting this trait occur at a high rate.  相似文献   

2.
Sexual selection on males is predicted to have widespread effects on genetic variation as a consequence of the pleiotropic allelic effects on sexual and nonsexual traits. We manipulated the opportunity for sexual selection on males during 27 generations of mutation accumulation in inbred lines of Drosophila serrata, and used a microarray platform to investigate the effect of sexual selection on the expression of 2689 genes. While gene expression signal was, on average, higher in the absence of sexual selection, this difference was small (0.1%). In contrast, sexual selection impacted substantially on the mutational variance in gene expression. Over all genes, mutational variance in gene expression was, on average, 42% higher when sexual selection operated than when it was absent. Our results indicate that sexual selection on males can generate widespread effects across the genome. An increase in mutational variance without a corresponding change in mean suggested that most expression traits were unlikely to be under direct sexual selection. Instead, the mutational variance in gene expression traits is consistent with divergence generated by widespread pleiotropic associations with traits affecting male mating success.  相似文献   

3.
Mutation load is a key parameter in evolutionary theories, but relatively little empirical information exists on the mutation load of populations, or the elimination of this load through selection. We manipulated the opportunity for sexual selection within a mutation accumulation divergence experiment to determine how sexual selection on males affected the accumulation of mutations contributing to sexual and nonsexual fitness. Sexual selection prevented the accumulation of mutations affecting male mating success, the target trait, as well as reducing mutation load on productivity, a nonsexual fitness component. Mutational correlations between mating success and productivity (estimated in the absence of sexual selection) were positive. Sexual selection significantly reduced these fitness component correlations. Male mating success significantly diverged between sexual selection treatments, consistent with the fixation of genetic differences. However, the rank of the treatments was not consistent across assays, indicating that the mutational effects on mating success were conditional on biotic and abiotic context. Our experiment suggests that greater insight into the genetic targets of natural and sexual selection can be gained by focusing on mutational rather than standing genetic variation, and on the behavior of trait variances rather than means.  相似文献   

4.
Theory predicts that if most mutations are deleterious to both overall fitness and condition-dependent traits affecting mating success, sexual selection will purge mutation load and increase nonsexual fitness. We explored this possibility with populations of mutagenized Drosophila melanogaster exhibiting elevated levels of deleterious variation and evolving in the presence or absence of male-male competition and female choice. After 60 generations of experimental evolution, monogamous populations exhibited higher total reproductive output than polygamous populations. Parental environment also affected fitness measures - flies that evolved in the presence of sexual conflict showed reduced nonsexual fitness when their parents experienced a polygamous environment, indicating trans-generational effects of male harassment and highlighting the importance of a common garden design. This cost of parental promiscuity was nearly absent in monogamous lines, providing evidence for the evolution of reduced sexual antagonism. There was no overall difference in egg-to-adult viability between selection regimes. If mutation load was reduced by the action of sexual selection in this experiment, the resultant gain in fitness was not sufficient to overcome the costs of sexual antagonism.  相似文献   

5.
Zhang XS  Hill WG 《Genetics》2002,162(1):459-471
In quantitative genetics, there are two basic "conflicting" observations: abundant polygenic variation and strong stabilizing selection that should rapidly deplete that variation. This conflict, although having attracted much theoretical attention, still stands open. Two classes of model have been proposed: real stabilizing selection directly on the metric trait under study and apparent stabilizing selection caused solely by the deleterious pleiotropic side effects of mutations on fitness. Here these models are combined and the total stabilizing selection observed is assumed to derive simultaneously through these two different mechanisms. Mutations have effects on a metric trait and on fitness, and both effects vary continuously. The genetic variance (V(G)) and the observed strength of total stabilizing selection (V(s,t)) are analyzed with a rare-alleles model. Both kinds of selection reduce V(G) but their roles in depleting it are not independent: The magnitude of pleiotropic selection depends on real stabilizing selection and such dependence is subject to the shape of the distributions of mutational effects. The genetic variation maintained thus depends on the kurtosis as well as the variance of mutational effects: All else being equal, V(G) increases with increasing leptokurtosis of mutational effects on fitness, while for a given distribution of mutational effects on fitness, V(G) decreases with increasing leptokurtosis of mutational effects on the trait. The V(G) and V(s,t) are determined primarily by real stabilizing selection while pleiotropic effects, which can be large, have only a limited impact. This finding provides some promise that a high heritability can be explained under strong total stabilizing selection for what are regarded as typical values of mutation and selection parameters.  相似文献   

6.
7.
The genetic covariation among different traits may cause the appearance of correlated response to selection on multivariate phenotypes. Genes responsible for the expression of melanin-based color traits are also involved in other important physiological functions such as immunity and metabolism by pleiotropy, suggesting the possibility of multivariate evolution. However, little is known about the relationship between melanin coloration and these functions at the additive genetic level in wild vertebrates. From a multivariate perspective, we simultaneously explored inheritance and selection of melanin coloration, body mass and phytohemagglutinin (PHA)-mediated immune response by using long-term data over an 18-year period collected in a wild population of the common kestrel Falco tinnunculus. Pedigree-based quantitative genetic analyses showed negative genetic covariance between melanin-based coloration and body mass in male adults and positive genetic covariance between body mass and PHA-mediated immune response in fledglings as predicted by pleiotropic effects of melanocortin receptor activity. Multiple selection analyses showed an increased fitness in male adults with intermediate phenotypic values for melanin color and body mass. In male fledglings, there was evidence for a disruptive selection on rump gray color, but a stabilizing selection on PHA-mediated immune response. Our results provide an insight into the evolution of multivariate traits genetically related with melanin-based coloration. The differences in multivariate inheritance and selection between male and female kestrels might have resulted in sexual dimorphism in size and color. When pleiotropic effects are present, coloration can evolve through a complex pathway involving correlated response to selection on multivariate traits.  相似文献   

8.
The assumption that pleiotropic mutations are more deleterious than mutations with more restricted phenotypic effects is an important premise in models of evolution. However, empirical evidence supporting this assumption is limited. Here, we estimated the strength of stabilizing selection on mutations affecting gene expression in male Drosophila serrata. We estimated the mutational variance (VM) and the standing genetic variance (VG) from two well-matched panels of inbred lines: a panel of mutation accumulation (MA) lines derived from a single inbred ancestral line and a panel of inbred lines derived from an outbred population. For 855 gene-expression traits, we estimated the strength of stabilizing selection as s = VM/VG. Selection was observed to be relatively strong, with 17% of traits having s > 0.02, a magnitude typically associated with life-history traits. Randomly assigning expression traits to five-trait sets, we used factor analytic mixed modeling in the MA data set to identify covarying traits that shared pleiotropic mutations. By assigning traits to the same trait sets in the outbred line data set, we then estimated s for the combination of traits affected by pleiotropic mutation. For these pleiotropic combinations, the median s was three times greater than s acting on the individual component traits, and 46% of the pleiotropic trait combinations had s > 0.02. Although our analytical approach was biased toward detecting mutations with relatively large effects, likely overestimating the average strength of selection, our results provide widespread support for the prediction that stronger selection can act against mutations with pleiotropic effects.THE extent to which new mutations have pleiotropic effects on multiple traits, and ultimately on fitness is central to our understanding of the maintenance of genetic variation and the process of adaptation (Kondrashov and Turelli 1992; Otto 2004; Johnson and Barton 2005; Zhang and Hill 2005). Analyses of Fisher’s (1930) geometric model of adaptation have shown that a mutation with effects on many traits will have a reduced probability of contributing to adaptive evolution (Orr 2000; Welch and Waxman 2003; see also Haygood 2006). For a population close to its optimum under mutation–selection balance, a direct corollary of this is that selection must act more strongly against mutations with wider pleiotropic effects (Zhang 2012).Evidence for the strength of selection increasing with the number of traits that are pleiotropically affected by a mutation is limited. At a phenotypic level, nonlinear (stabilizing) selection is much stronger on combinations of metric traits than on each individual trait contributing to the combination (Blows and Brooks 2003; Walsh and Blows 2009). Given that genetic correlations among such traits are expected to be a consequence of pleiotropic alleles (Lande 1980), stronger selection on trait combinations is consistent with stronger selection on pleiotropic mutations that are likely to underlie the genetic covariance among such traits. There is some evidence that per-trait allelic effects might be greater for alleles with more widespread pleiotropic effects (Wagner et al. 2008; Wang et al. 2010); as mutations with larger phenotypic effects might be more effectively targeted by selection, this also suggests stronger selection against more pleiotropic mutation.Mutation accumulation (MA) breeding designs, in which the opportunity for selection is reduced, allowing new mutations to drift to fixation, provide an opportunity to characterize the strength of selection acting directly against new mutations. Rice and Townsend (2012) proposed an approach for determining the strength of selection acting against mutations at individual loci, combining information from QTL mapping and MA studies. This approach could conceivably be extended to associate the strength of selection with the number of traits a QTL affects. More typically, estimates of selection from MA designs are focused on traits, rather than alleles. Under the assumption that most mutations are deleterious, an assumption supported by MA studies (Halligan and Keightley 2009), the strength of selection acting on mutations affecting quantitative traits can be measured as the ratio of the mutational to the standing genetic variance, s = VM/VG, where s is the selection coefficient of the mutation in heterozygous form (Barton 1990; Houle et al. 1996). While estimating s in this way provides a framework for estimating selection on pleiotropic combinations of traits, we are not aware of any studies adopting this approach to directly estimate the strength of selection acting on mutations affecting multiple traits.Within an MA framework, Estes and Phillips (2006) manipulated the opportunity for selection, providing rare direct evidence of stronger selection against mutations with pleiotropic effects. In a DNA repair-deficient strain of Caenorhabditis elegans, Estes and Phillips (2006) observed lower mutational covariance among life-history components when selection was allowed (larger populations) than when the opportunity for selection was limited (small populations). Similarly, McGuigan et al. (2011) compared Drosophila serrata MA lines accumulating mutations in the presence or absence of sexual selection on males, reporting reduced covariance between two fitness components in the selection treatment. These studies reveal that selection can eliminate nonlethal alleles with pleiotropic effects, but whether traits other than life-history components exhibit similar evidence of selection against pleiotropic alleles remains unknown.In parallel to the quantitative genetic predictions that pleiotropic alleles will be under stronger selection, molecular genetic theory predicts that the rate of gene evolution will be negatively correlated with pleiotropy (Pal et al. 2006; Salathe et al. 2006). More highly pleiotropic genes, as identified through the extent of connectivity (the number of interactions) in protein–protein interaction networks (Jeong et al. 2001), or the number of gene ontology (GO) terms (Jovelin and Phillips 2009) are more likely to be essential (i.e., knockout mutations result in lethality), suggesting that selection is stronger against large-effect (knockout) mutations in more highly pleiotropic genes. However, the selection acting against small-effect, nonlethal mutations in pleiotropic genes is less clear (Pal et al. 2006). Several studies have found an association between gene pleiotropy indices, such GO annotation of the number of biological processes or tissue specificity of expression, and the rate of sequence evolution (e.g., Pal et al. 2001; Salathe et al. 2006; Jovelin and Phillips 2009; Su et al. 2010). These pleiotropy indices typically explain little of the variation in sequence evolutionary rates, and it remains unclear whether more highly pleiotropic mutations are typically under stronger selection (Pal et al. 2006; Salathe et al. 2006).Here, we estimate the selection coefficients acting against naturally occurring mutations affecting gene-expression traits in male D. serrata to quantitatively test if selection is stronger on mutations that affect multiple traits. Gene-expression phenotypes are uniquely positioned to enable detailed investigations of pleiotropy: there are many of them, they represent a broad coverage of biological function, they can be analyzed to quantify developmental pleiotropy in the same way as traits traditionally considered in quantitative genetics, and GO information can be used to index molecular genetic pleiotropy. We use multivariate mixed-model analyses of expression traits in a set of inbred lines from a mutation accumulation experiment to estimate the mutational variance in individual expression traits, and the pleiotropic mutational covariance among random sets of five expression traits. Using a second panel of inbred lines, derived from a natural, outbred, population, we estimate the standing genetic variance in the same individual traits and five-trait combinations. From these estimates of mutational and standing genetic variance, we calculate s for each of the individual traits and trait combinations to determine whether selection has typically been stronger on mutations with pleiotropic effects than on other mutations affecting each trait. We complement this quantitative genetic analysis of developmental pleiotropy with an analysis of molecular genetic pleiotropy (Paaby and Rockman 2013), determining whether the strength of selection acting on individual expression traits can be predicted from the number of biological functions that the gene annotates to in the GO database or to the range of tissues in which the gene is expressed.  相似文献   

9.
Adult reproductive success can account for a large fraction of male fitness, however, we know relatively little about the susceptibility of reproductive traits to mutation-accumulation (MA). Estimates of the mutational rate of decline for adult fitness and its components are controversial in Drosophila melanogaster, and post-copulatory performance has not been examined. We therefore separately measured the consequences of MA for total male reproductive success and its major pre-copulatory and post-copulatory components: mating success and sperm competitive success. We also measured juvenile viability, an important fitness component that has been well studied in MA experiments. MA had strongly deleterious effects on both male viability and adult fitness, but the latter declined at a much greater rate. Mutational pressure on total fitness is thus much greater than would be predicted by viability alone. We also noted a significant and positive correlation between all adult traits and viability in the MA lines, suggesting pleiotropy of mutational effect as required by 'good genes' models of sexual selection.  相似文献   

10.
The morphology-performance-fitness paradigm is usually exploredby determining whether natural or "phenotypically engineered"variation among individuals in morphology (physiology) or performancecovaries with an index of fitness such as survival. Here westudy between-line covariation between performance and fitnessfor 44 lines of flies that had undergone mutation accumulation(in the absence of natural selection) on the second chromosomefor 62 generations, plus 13 control lines. These mutation accumulation(MA) lines were known to have reduced competitive fitness andlife history scores, and to have positive between-line covariancesamong life history traits. We measured several performance traitsof larvae and adults (and a life history trait), examined covariancesamong those trait means, and also examined covariances of traitswith competitive fitness. MA lines had significantly lower performancesthan did control lines in most traits. However, because controllines had been unknowingly contaminated, a conclusion that MAreduces performance must be tentative. Correlations among performancetraits were highly variable in sign, suggesting that MA doesnot negatively affect all traits equivalently. Even so, correlationmatrices for MA and for control lines were very similar. Inbivariate comparisons, only one performance trait (a "get-a-gripindex," which measures the ability of a falling fly to catchitself on baffles) was positively correlated with competitivefitness. Multivariate analyses again suggested the importanceprimarily of get-a-grip. Two main patterns emerge from thisstudy. First, MA negatively affects diverse aspects of physiologicalperformance, but does so differentially across traits. Second,except for GAG, MA-induced variation in performance is at bestweakly correlated with competitive fitness.  相似文献   

11.
Yoshinari Tanaka 《Genetica》2010,138(7):717-723
Pleiotropic effects of deleterious mutations are considered to be among the factors responsible for genetic constraints on evolution by long-term directional selection acting on a quantitative trait. If pleiotropic phenotypic effects are biased in a particular direction, mutations generate apparent directional selection, which refers to the covariance between fitness and the trait owing to a linear association between the number of mutations possessed by individuals and the genotypic values of the trait. The present analysis has shown how the equilibrium mean value of the trait is determined by a balance between directional selection and biased pleiotropic mutations. Assuming that genes act additively both on the trait and on fitness, the total variance-standardized directional selection gradient was decomposed into apparent and true components. Experimental data on mutation bias from the bristle traits of Drosophila and life history traits of Daphnia suggest that apparent selection explains a small but significant fraction of directional selection pressure that is observed in nature; the data suggest that changes induced in a trait by biased pleiotropic mutation (i.e., by apparent directional selection) are easily compensated for by (true) directional selection.  相似文献   

12.
Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.  相似文献   

13.
The pattern and extent of pleiotropic gene action can contribute substantially to the internal structure and shape of the additive genetic variance-covariance matrix (G)--a key determinant of evolutionary trajectories. We use data from our study (Estes et al. 2004) on the univariate effects of mutation in a mismatch-repair-defective strain, msh-2, of Caenorhabditis elegans to address the impact of increasing levels of selection on the magnitude and pattern of genetic covariance due to new mutations. Mutational covariances between three life-history traits are shown to exhibit a weak pattern of decline with increasing population size (increasing selection), while the orientation of mutational matrices remains reasonably constant. This suggests that mutations with smaller effects on fitness may tend to be slightly more confined in their influence than large-effect mutations (i.e., small-effect mutations reduce the magnitude of covariation between characters), but do not change the direction of this covariation.  相似文献   

14.
Gynodioecious plants exhibit modest sexual dimorphism in vegetative and phenological traits, which stands in stark contrast to pronounced dimorphism in reproductive traits. I evaluate the roles of limited genetic variation, negative genetic covariation (within and between sex morphs), and lack of gender-differential selection in contributing to minimal sexual dimorphism for these traits in Fragaria virginiana. Major findings are as follows. First, selection was sometimes differential but rarely divergent between male and female fertility modes. Second, response to selection was constrained by low genetic variation and extensive genetic covariance. In fact, covariance between traits within sex morphs appears to represent a constraint on par with that of covariance between sex morphs. Third, these constraints combine with different modes of gamete transmission to produce very different gender-specific contributions to the mean phenotypes of the next generation. Finally, predicted responses to selection for several traits are concordant with the degree and direction of dimorphism in a closely related dioecious species. In sum, this work suggests that minimal sexual dimorphism in vegetative and phenological traits is due to similar directional selection via male and female fertility combined with the constraints of low genetic variation and extensive genetic covariance both within and between sex morphs.  相似文献   

15.
Elucidating the nature of genetic variation underlying both sexually selected traits and the fitness components of sexual selection is essential to understanding the broader consequences of sexual selection as an evolutionary process. To date, there have been relatively few attempts to connect the genetic variance in sexually selected traits with segregating DNA sequence polymorphisms. We set out to address this in a well‐characterized sexual selection system – the cuticular hydrocarbons (CHCs) of Drosophila serrata – using an indirect association study design that allowed simultaneous estimation of the genetic variance in CHCs, sexual fitness and single nucleotide polymorphism (SNP) effects in an outbred population. We cloned and sequenced an ortholog of the D. melanogaster desaturase 2 gene, previously shown to affect CHC biosynthesis in D. melanogaster, and associated 36 SNPs with minor allele frequencies > 0.02 with variance in CHCs and sexual fitness. Three SNPs had significant multivariate associations with CHC phenotype (q‐value < 0.05). At these loci, minor alleles had multivariate effects on CHCs that were weakly associated with the multivariate direction of sexual selection operating on these traits. Two of these SNPs had pleiotropic associations with male mating success, suggesting these variants may underlie responses to sexual selection due to this locus. There were 15 significant male mating success associations (q‐value < 0.1), and interestingly, we detected a nonrandom pattern in the relationship between allele frequency and direction of effect on male mating success. The minor‐frequency allele usually reduced male mating success, suggesting a positive association between male mating success and total fitness at this locus.  相似文献   

16.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

17.
Estimates of the form and magnitude of natural selection based on phenotypic relationships between traits and fitness measures can be biased when environmental factors influence both relative fitness and phenotypic trait values. I quantified genetic variances and covariances, and estimated linear and quadratic selection coefficients, for seven traits of an annual plant grown in the field. For replicates of 50 paternal half-sib families, coefficients of selection were calculated both for individual phenotypic values of the traits and for half-sib family mean values. The potential for evolutionary response was supported by significant heritability and phenotypic directional selection for several traits but contradicted by the absence of significant genetic variation for fitness estimates and evidence of bias in phenotypic selection coefficients due to environmental covariance for at least two of the traits analysed. Only studies of a much wider range of organisms and traits will reveal the frequency and extent of such bias.  相似文献   

18.
Morphological traits are often used in performing ecological tasks or in sexual display behaviour. Variation in morphology is thus expected to be coupled to variation in idiosyncratic behaviours across ecologically or sexually diverged lineages. However, it is poorly understood whether this prediction holds and how functional constraints, shared ancestry, or selection contribute to morphology-behaviour co-evolution. Here, we test this prediction in four cricket species, which differ strikingly in their sexually selected mate calling songs, produced by engaging their specialized forewings. Using geometric morphometrics we provide the first evidence that wing shape and size varies consistently across species. We then test whether wing shape and song co-evolve and whether co-evolution is best explained by individual-level functional/genetic covariance or by population-level evolutionary covariance. Song structure and wing shape are coupled, even after accounting for phylogeny. However, there is limited covariance within species. Thus, wing morphology and sexual signalling behaviour in crickets are likely linked due to shared (ancestral) effects from neutral and selective processes. We show that morphology and behaviour can be linked across but not within species and discuss how evolutionary stasis, genetic linkage, and evolutionary covariance help explain this pattern.  相似文献   

19.
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first‐ and second‐generation hybrids produced by controlled crosses between either two co‐mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major‐effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.  相似文献   

20.
Sexual selection can target many different types of traits. However, the relative influence of different sexually selected traits during evolutionary divergence is poorly understood. We used the field cricket Teleogryllus oceanicus to quantify and compare how five traits from each of three sexual signal modalities and components diverge among allopatric populations: male advertisement song, cuticular hydrocarbon (CHC) profiles and forewing morphology. Population divergence was unexpectedly consistent: we estimated the among‐population (genetic) variance‐covariance matrix, D , for all 15 traits, and Dmax explained nearly two‐thirds of its variation. CHC and wing traits were most tightly integrated, whereas song varied more independently. We modeled the dependence of among‐population trait divergence on genetic distance estimated from neutral markers to test for signatures of selection versus neutral divergence. For all three sexual trait types, phenotypic variation among populations was largely explained by a neutral model of divergence. Our findings illustrate how phenotypic integration across different types of sexual traits might impose constraints on the evolution of mating isolation and divergence via sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号