首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.  相似文献   

2.
Free energy profiles for insertion of a hydrophobic transmembrane protein α-helix (M2 from CFTR) into a lipid bilayer have been calculated using coarse-grained molecular dynamics simulations and umbrella sampling to yield potentials of mean force along a reaction path corresponding to translation of a helix across a lipid bilayer. The calculated free energy of insertion is smaller when a bilayer with a thinner hydrophobic region is used. The free energies of insertion from the potentials of mean force are compared with those derived from a number of hydrophobicity scales and with those derived from translocon-mediated insertion. This comparison supports recent models of translocon-mediated insertion and in particular suggests that: 1), helices in an about-to-be-inserted state may be located in a hydrophobic region somewhat thinner than the core of a lipid bilayer; and/or 2), helices in a not-to-be-inserted state may experience an environment more akin (e.g., in polarity/hydrophobicity) to the bilayer/water interface than to bulk water.  相似文献   

3.
Aggregation of transmembrane proteins is important for many biological processes, such as protein sorting and cell signaling, and also for in vitro processes such as two-dimensional crystallization. We have used large-scale simulations to study the lateral organization and dynamics of lipid bilayers containing multiple inserted proteins. Using coarse-grained molecular dynamics simulations, we have studied model membranes comprising ∼7000 lipids and 16 identical copies of model cylindrical proteins of either α-helical or β-barrel types. Through variation of the lipid tail length and hence the degree of hydrophobic mismatch, our simulations display levels of protein aggregation ranging from negligible to extensive. The nature and extent of aggregation are shown to be influenced by membrane curvature and the shape or orientation of the protein. Interestingly, a model β-barrel protein aggregates to form one-dimensional strings within the bilayer plane, whereas a model α-helical bundle forms two-dimensional clusters. Overall, it is clear that the nature and extent of membrane protein aggregation is dependent on several aspects of the proteins and lipids, including hydrophobic mismatch, protein class and shape, and membrane curvature.  相似文献   

4.
Bond PJ  Wee CL  Sansom MS 《Biochemistry》2008,47(43):11321-11331
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT.  相似文献   

5.
In order to investigate the role of each amino acid residue in determining the secondary structure of the transmembrane segment of membrane proteins in a lipid bilayer, we made a conformational analysis by CD for lipid-soluble homooligopeptides, benzyloxycarbonyl-(Z-) Aaan-OEt (n = 5-7), composed of Ala, Leu, Val, and Phe, in three media of trifluoroethanol, sodium dodecyl sulfaie micelle, and phospholipid liposomes. The lipid-peptide interaction was also studied through the observation of bilayer phase transition by differential scanning cahrimetry (DSC). The CD studies showed that peptides except for Phe oligomers are present as a mainly random structure in trifluoroethanol, as a mixture of α-helix, β-sheet, β-turn, and /or random in micelles above the critical micellization concentration and preferably as an extended structure of α-helical or β-structure in dipalmitoyl-D,L -α-phosphatidylcholine (DPPC) liposomes of gel state. That the β-structure content of Val oligomers in lipid bilayers is much higher than that in micelles and the oligopeptides of Leu (n = 7) and Ala (n = 6) can take an α-helical structure with one to two turns in lipid bilayers despite their short chain lengths indicates that lipid bilayers can stabilize the extended structure of both α-helical and β-structures of the peptides. The DSC study for bilayer phase transition of DPPC / peptide mixtures showed that the Leu oligomer virtually affects neither the temperature nor the enthalpy of the transition, while Val and Ala oligomers slightly reduce the transition enthalpy without altering the transition temperature. In contrast, the Phe oligomer affects the phase transition in much more complicated manner. The decreasing tendency of the transition enthalpy was more pronounced for the Ala oligomer as compared with the Leu and Val oligomers, which means that the isopropyl group of the side chain has a less perturbing effect on the lipid acyl chain than the methyl group of Ala. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
A structural characterization of a synthetic peptide corresponding to the fourth transmembrane domain (M4-TMD) of the γ-subunit of the nicotinic acetylcholine receptor from Torpedo californica has been undertaken. Solid-state NMR and CD spectroscopy studies indicate that upon reconstitution into lipid vesicles or magnetically aligned lipid bilayers, the synthetic M4-TMD adopts a linear α-helical conformation with the helix aligned within 15° of the membrane normal. Furthermore, analysis of the motional averaging of anisotropic interactions present in the solid-state NMR spectra of the reconstituted peptide, indicate that the dynamics of the peptide within the bilayer are highly sensitive to the phase adopted by the lipid bilayer, providing an insight into how the interaction of lipids with this domain may play a important role in the modulation of this receptor by its lipid environment.  相似文献   

7.
Hydrophobic mismatch arises from a difference in the hydrophobic thickness of a lipid membrane and a transmembrane protein segment, and is thought to play an important role in the folding, stability and function of membrane proteins. We have investigated the possible adaptations that lipid bilayers and transmembrane α-helices undergo in response to mismatch, using fully-atomistic molecular dynamics simulations totaling 1.4 μs. We have created 25 different tryptophan-alanine-leucine transmembrane α-helical peptide systems, each composed of a hydrophobic alanine–leucine stretch, flanked by 1–4 tryptophan side chains, as well as the β-helical peptide dimer, gramicidin A. Membrane responses to mismatch include changes in local bilayer thickness and lipid order, varying systematically with peptide length. Adding more flanking tryptophan side chains led to an increase in bilayer thinning for negatively mismatched peptides, though it was also associated with a spreading of the bilayer interface. Peptide tilting, bending and stretching were systematic, with tilting dominating the responses, with values of up to ~ 45° for the most positively mismatched peptides. Peptide responses were modulated by the number of tryptophan side chains due to their anchoring roles and distributions around the helices. Potential of mean force calculations for local membrane thickness changes, helix tilting, bending and stretching revealed that membrane deformation is the least energetically costly of all mismatch responses, except for positively mismatched peptides where helix tilting also contributes substantially. This comparison of energetic driving forces of mismatch responses allows for deeper insight into protein stability and conformational changes in lipid membranes.  相似文献   

8.
Coronaviruses contain a small envelope membrane protein with cation-selective ion channel activity mediated by its transmembrane domain (ETM). In a computational study, we proposed that ion channel activity can be explained by either of two similar ETM homopentameric transmembrane α-helical bundles, related by a ∼50° rotation of the helices. Later, we tested this prediction, using site-specific infrared dichroism of a lysine-flanked isotopically labeled ETM peptide from the virus responsible for the severe acute respiratory syndrome, SARS, reconstituted in lipid bilayers. However, the data were consistent with the presence of a kink at the center of the ETM α-helix, and it did not fit completely either computational model. Herein, we have used native ETM, without flanking lysines, and show that the helix orientation is now consistent with one of the predicted models. ETM only produced one oligomeric form, pentamers, in the lipid-mimic detergent dodecylphosphocholine and in perfluorooctanoic acid. We thus report the correct backbone model for the pentameric α-helical bundle of ETM. The disruptive effects caused by terminal lysines probably highlight the conformational flexibility required during ion channel function.  相似文献   

9.
Antimicrobial peptides, isolated from the dorsal glands of Australian tree frogs, possess a wide spectrum of biological activity and some are specific to certain pathogens. These peptides have the capability of disrupting bacterial membranes and lysing lipid bilayers. This study focused on the following amphibian peptides: (1) aurein 1.2, a 13-residue peptide; (2) citropin 1.1, with 16 residues; and (3) maculatin 1.1, with 21 residues. The antibiotic activity and structure of these peptides have been studied and compared and possible mechanisms by which the peptides lyse bacterial membrane cells have been proposed. The peptides adopt amphipathic -helical structures in the presence of lipid micelles and vesicles. Specifically 15N-labelled peptides were studied using solid-state NMR to determine their structure and orientation in model lipid bilayers. The effect of these peptides on phospholipid membranes was determined by 2H and 31P solid-state NMR techniques in order to understand the mechanisms by which they exert their biological effects that lead to the disruption of the bacterial cell membrane. Aurein 1.2 and citropin 1.1 are too short to span the membrane bilayer while the longer maculatin 1.1, which may be flexible due to the central proline, would be able to span the bilayer as a transmembrane -helix. All three peptides had a peripheral interaction with phosphatidylcholine bilayers and appear to be located in the aqueous region of the membrane bilayer. It is proposed that these antimicrobial peptides have a "detergent"-like mechanism of membrane lysis.This paper was submitted as a record of the 2002 Australian Biophysical Society  相似文献   

10.
α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (N(cyt)-C(lum) or N(lum)-C(cyt)) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the "missing hydrophobicity" in polytopic membrane proteins.  相似文献   

11.
Maculatin 1.1 (M1.1) is a membrane-active antimicrobial peptide (AMP) from an Australian tree frog that forms a kinked amphipathic α-helix in the presence of a lipid bilayer or bilayer-mimetic environment. To help elucidate its mechanism of membrane-lytic activity, we performed a total of ∼8 μs of coarse-grained molecular dynamics (CG-MD) simulations of M1.1 in the presence of zwitterionic phospholipid membranes. Several systems were simulated in which the peptide/lipid ratio was varied. At a low peptide/lipid ratio, M1.1 adopted a kinked, membrane-interfacial location, consistent with experiment. At higher peptide/lipid ratios, we observed spontaneous, cooperative membrane insertion of M1.1 peptide aggregates. The minimum size for formation of a transmembrane (TM) aggregate was just four peptides. The absence of a simple and well-defined central channel, along with the exclusion of lipid headgroups from the aggregates, suggests that a pore-like model is an unlikely explanation for the mechanism of membrane lysis by M1.1. We also performed an extended 1.25 μs simulation of the permeabilization of a complete liposome by multiple peptides. Consistent with the simpler bilayer simulations, formation of monomeric interfacial peptides and TM peptide clusters was observed. In contrast, major structural changes were observed in the vesicle membrane, implicating induced membrane curvature in the mechanism of active antimicrobial peptide lysis. This contrasted with the behavior of the nonpore-forming model peptide WALP23, which inserted into the vesicle to form extended clusters of TM α-helices with relatively little perturbation of bilayer properties.  相似文献   

12.
31P and 15N solid-state NMR with the magic angle-oriented sample spinning (MAOSS) strategy was used to investigate the effect of two model peptides on phospholipid bilayers mimicking biological membrane. One of the peptides, alamethicin, used as a reference of transmembrane alignment, has been shown to disrupt the lipid bilayer organisation, affecting the DMPC packaging. On the other hand, a α-helix alanine-rich peptide, K3A18K3, with a 15N labelled alanine, did not present any effect in the DMPC bilayer organisation. The mean orientation of this peptide in the bilayer gave a transmembrane alignment of about 80%.  相似文献   

13.
Inter-helix hydrogen bonding involving asparagine (Asn, N), glutamine (Gln, Q), aspartic acid (Asp, D) or glutamic acid (Glu, E) can drive efficient di- or trimerization of transmembrane helices in detergent micelles and lipid bilayers. Likewise, Asn-Asn and Asp-Asp pairs can promote the formation of helical hairpins during translocon-mediated membrane protein assembly in the endoplasmic reticulum. By in vitro translation of model integral membrane protein constructs in the presence of rough microsomes, we show that Asn- or Asp-mediated interactions with a neighbouring transmembrane helix can enhance the membrane insertion efficiency of a marginally hydrophobic transmembrane segment. Our observations suggest that inter-helix hydrogen bonds can form during Sec61 translocon-assisted insertion and thus could be important for membrane protein assembly.  相似文献   

14.
We investigated the effect of amino acid composition and hydrophobic length of α-helical transmembrane peptides and the role of electrostatic interactions on the lateral diffusion of the peptides in lipid membranes. Model peptides of varying length and composition, and either tryptophans or lysines as flanking residues, were synthesized. The peptides were labeled with the fluorescent label Alexa Fluor 488 and incorporated into phospholipid bilayers of different hydrophobic thickness and composition. Giant unilamellar vesicles were formed by electroformation, and the lateral diffusion of the transmembrane peptides (and lipids) was determined by fluorescence correlation spectroscopy. In addition, we performed coarse-grained molecular-dynamics simulations of single peptides of different hydrophobic lengths embedded in planar membranes of different thicknesses. Both the experimental and simulation results indicate that lateral diffusion is sensitive to membrane thickness between the peptides and surrounding lipids. We did not observe a difference in the lateral diffusion of the peptides with respect to the presence of tryptophans or lysines as flanking residues. The specific lipid headgroup composition of the membrane has a much less pronounced impact on the diffusion of the peptides than does the hydrophobic thickness.  相似文献   

15.
Pore formation in lipid bilayers by channel-forming peptides and toxins is thought to follow voltage-dependent insertion of amphipathic α-helices into lipid bilayers. We have developed an approximate potential for use within the CHARMm molecular mechanics program which enables one to simulate voltage-dependent interaction of such helices with a lipid bilayer. Two classes of helical peptides which interact with lipid bilayers have been studied: (a) δ-toxin, a 26 residue channel-forming peptide from Staphylococcus aureus; and (b) synthetic peptides corresponding to the α5 and α7 helices of the pore-forming domain of Bacillus thuringiensis CryIIIA δ-endotoxin. Analysis of δ-toxin molecular dynamics (MD) simulations suggested that the presence of a transbilayer voltage stabilized the inserted location of δ-toxin helices, but did not cause insertion per se. A series of simulations for the α5 and α7 peptides revealed dynamic switching of the α5 helix between a membrane-associated and a membrane-inserted state in response to a transbilayer voltage. In contrast the α7 helix did not exhibit such switching but instead retained a membrane associated state. These results are in agreement with recent experimental studies of the interactions of synthetic α5 and α7 peptides with lipid bilayers.  相似文献   

16.
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (α-helical and β-barrel), and the seven different bilayer systems range in thickness from ∼28 to ∼43 Å. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.  相似文献   

17.
The hydrophobic organization of the intramembraneα-helical bundle in bacteriorhodopsin (BRh) was assessed based on a new approach to characterization of spatial hydrophobic properties of transmembrane (TM)α-helical peptides. The method employs two independent techniques: Monte Carlo simulations of nonpolar solvent around TM peptides and analysis of molecular hydrophobicity potential on their surfaces. The results obtained by the two methods agree with each other and permit precise hydrophobicity mapping of TM peptides. Superimposition of such data on the experimentally derived spatial model of the membrane moiety together with 2D maps of hydrophobic hydrophilic contacts provide considerable insight into the hydrophobic organization of BRh. The helix bundle is stabilized to a large extent by hydrophobic interactions between helices—neighbors in the sequence of BRh, by long-range interactions in helix pairs C-E, C-F, and C-G, and by nonpolar contracts between retinal and helices C, D, E, F. Unlike globular proteins, no polar contacts between residues distantly separated in the sequence of BRh were found in the bundle. One of the most striking results of this study is the finding that the hydrophobic organization of BRh is significantly different from those in bacterial photoreaction centers. Thus, TMα-helices in BRh expose their most nonpolar sides to the bilayer as well as to the neighboring helices and to the interior of the bundle. Some of them contact lipids with their relatively hydrophilic surfaces. No correlation was found between disposition of the most hydrophobic and the most variable sides of the TM helices.  相似文献   

18.
The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. 31P NMR and double-resonance 1H/15N NMR experiments performed between 25°C and 61°C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61°C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.  相似文献   

19.
α-Synuclein (α-syn) membrane interactions are implicated in the pathogenesis of Parkinson's disease. Fluorescence and neutron reflectometry (NR) measurements reveal that α-syn penetrates ~9–14 Å into the outer leaflet of the bilayer, with a substantial portion of the membrane-bound polypeptide extending into the aqueous solvent. For the first time, to our knowledge, we used NR to obtain direct quantitative evidence of α-syn-induced membrane thinning. To examine the effect of specific residues on membrane penetration depths, we used a series of W4-containing N-terminal peptides. We identified that the first 15 residues (P15) nearly recapitulate the features of the full-length protein (i.e., partition constants, molecular mobility, and insertion of the W4 side chain into the bilayer), and found that as few as the first four N-terminal residues are sufficient for vesicle binding. Although at least one imperfect amphipathic repeat sequence (KAKEGV) is required for α-helical formation, secondary structural formation has little effect on membrane affinity. To develop an N-terminal α-syn model for bilayer interactions, we performed molecular-dynamics simulations of the P15 peptide submerged in a bilayer. The simulation results are highly consistent with experimental data indicating a broad low-energy region (8.5–14.5 Å) for W4 insertion.  相似文献   

20.
Abstract

To assess the minimal peptide length required for the stabilization of the a-helix relative to the 310-helix in Aib-rich peptides, we have solved the X-ray diffraction structures of the terminally blocked sequential hexa- and octapeptides with the general formula -(Aib-L-Ala)n-(n = 3 and 4, respectively). The hexapeptide molecules are completely 310-helical with four 1 ← 4 intramolecular N-H … O=C H-bonds. On the other hand, the octapeptide molecules are essentially α-helical with four 1 ← 5 H-bonds; however, the helix is elongated at the N-terminus, with two 1 ← 4 H-bonds, giving these molecules a mixed α/310-helical character. In both compounds the right-handed screw sense of the helix is dictated by the presence of the Ala residues of L-configuration. This study represents the first experimental proof for a 310 →α-helix conversion in the crystal state induced by peptide backbone lengthening only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号