首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the effects of HgCl2 on renal parameters in nonlactating and lactating rats and their pups, as well as the preventive role of ZnCl2. Rats received 27 mg kg?1 ZnCl2 for five consecutive days and 5 mg kg?1 HgCl2 for five subsequent days (s.c.). A decrease in δ‐aminolevulinic acid dehydratase (δ‐ALA‐D) activity in the blood and an increase in urine protein content in renal weight as well as in blood and urine Hg levels were observed in lactating and nonlactating rats from Sal―Hg and Zn―Hg groups. ZnCl2 prevented partially the δ‐ALA‐D inhibition and the proteinuria in nonlactating rats. Renal Hg levels were increased in all HgCl2 groups, and the ZnCl2 exposure potentiated this effect in lactating rats. Nonlactating rats exposed to HgCl2 exhibited an increase in plasma urea and creatinine levels, δ‐ALA‐D activity inhibition and histopathological alterations (necrosis, atrophic tubules and collagen deposition) in the kidneys. ZnCl2 exposure prevented the biochemical alterations. Hg‐exposed pups showed lower body and renal weight and an increase in the renal Hg levels. In conclusion, mercury‐induced nephrotoxicity differs considerably between lactating and nonlactating rats. Moreover, prior exposure with ZnCl2 may provide protection to individuals who get exposed to mercury occupationally or accidentally. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The effectiveness of 2,3-dimercaptopropanol (BAL) andmeso-2,3-dimercaptosuccinic acid (DMSA) on HgCl2-induced nephrotoxicity was studied in the rat. Seven groups of adult male rats were given a single sc toxic dose of HgCl2 (0.68 mg/kg) followed by 0.9% saline (positive control group), BAL (15, 30, and 60 mg/kg) or DMSA (50, 100, and 200 mg/kg) administered ip at 0, 24, 48, and 72 h thereafter. Although the renal function of HgCl2-exposed rats was slightly improved after BAL administration, Hg concentrations in the kidney were only reduced at 60 mg/kg. In addition, the protective effect of BAL was not dose-related. In contrast to BAL, DMSA was effective in increasing the urinary excretion of Hg and in reducing the renal Hg content. These results show that DMSA would be more effective than BAL in preventing or in protecting against inorganic Hg-induced nephrotoxicity.  相似文献   

3.
This study was undertaken to examine changes in Zn and Cu homeostasis in the liver and kidney of rats caused by cadmium (Cd) or lipopolysaccharide (LPS) administration. Twenty-five male, 7- to 8-week-old Wistar rats were divided into five groups: saline only treatment, saline treatment and food deprivation, exposure to a single dose of Cd, exposure to LPS alone, and exposure to Cd + LPS. Changes in plasma nitrate concentrations and hepatic and renal Zn and Cu contents were measured together with urinary excretion rates for the metals and nitrate on 3 consecutive days: 24 h before treatment and 24 and 48 h after treatments. Cd exposure alone for 48 h caused a nearly 2-fold increase in plasma nitrate levels with no changes in urinary nitrate excretion whereas LPS treatment caused plasma nitrate levels to increase by 10-fold and urinary nitrate excretion to increase by 4-fold. Administration of LPS 24 h after Cd exposure caused a 10-fold increase in plasma nitrate concentrations and a 100-fold increase in urinary nitrate excretion compared to the rates prior to LPS administration. These results indicate a synergistic interaction between Cd and LPS toxicity. Cd exposure also caused a marked increase in hepatic Zn levels, but LPS did not cause any changes in hepatic Zn or Cu content. In sharp contrast, both Zn and Cu contents were decreased in the kidneys by 16 and 36% in animals exposed to Cd or LPS. A correlation analysis of measured variables reveals that renal Cu contents were inversely associated with plasma nitrate concentrations while urinary Cu excretion on day 3 showed a strong positive correlation with both urinary nitrate and Cd excretions on the same day. A linear regression analysis shows 20% of the variation in urinary Cu excretion was associated with urinary Cd excretion on the same day. It is concluded that reductions in renal Cu contents caused by Cd or LPS administration may be a result of Cd and NO displacement of Cu previously bound to metallothionein.  相似文献   

4.
This study investigated the ability of zinc (Zn) and N-acetylcysteine (NAC) in preventing the biochemical alterations caused by mercury (Hg) and the retention of this metal in different organs. Adult female rats received ZnCl2 (27 mg/kg) and/or NAC (5 mg/kg) or saline (0.9%) subcutaneously and after 24 h they received HgCl2 (5 mg/kg) or saline (0.9%). Twenty-four hours after, they were sacrificed and analyses were performed. Hg inhibited hepatic, renal, and blood δ-aminolevulinic acid dehydratase (δ-ALA-D) activity, decreased renal total thiol levels, as well as increased serum creatinine and urea levels and aspartate aminotransferase activity. HgCl2-exposed groups presented an important retention of Hg in all the tissues analyzed. All pre-treatments demonstrated tendency in preventing hepatic δ-ALA-D inhibition, whereas only ZnCl2 showed this effect on blood enzyme. Moreover, the combination of these compounds completely prevented liver and blood Hg retention. The exposure to Zn and Hg increased hepatic metallothionein levels. These results show that Zn and NAC presented promising effects against the toxicity caused by HgCl2.  相似文献   

5.
Parenteral administration of mercuric chloride (HgCl2) to rats enhanced lipid peroxidation in liver, kidney, lung, testis, and serum (but not in heart, spleen, or muscle), as measured by the thiobarbituric acid reaction for malondialdehyde (MDA) in fresh tissue homogenates and body fluids. After sc injection of HgCl2 (5 mg/kg body wt), MDA concentrations in liver and kidney became significantly increased by 9 h and reached peak values at 24 h. Dose-response studies were carried out with male albino rats of the Fisher-344 strain (body wt 170–280 g) injected with 1, 3, 5 mg Hg/kg as HgCl2 and sacrificed after 24 h. In time-response studies, animals were administered 5 mg Hg/kg as HgCl2 and sacrificed after 3, 9, 18, 24, and 48 h. Studies in the authors' laboratory have shown that (1) concentrations of MDA are increased in targets (liver, kidney, lung, and testis) of HgCl2-treated rats; (2) severity of hepatotoxicity and nephrotoxicity is generally consistent with the elevation of Hg and MDA concentrations, based upon the time-course and dose-effect relationships observed after administration of HgCl2 to rats; and (3) concentrations of MDA are reduced in target tissues after pretreatment with antioxidants and chelators to HgCl2-treated rats. The results of this study implicate that the lipid peroxidation is one of the molecular mechanisms for cell injury in acute HgCl2 poisoning.  相似文献   

6.
This study investigated if lactating and nonlactating rats presented differences in relation to hepatic sensitivity to HgCl2 and the potential preventive role of ZnCl2. Lactating (days 3–12 of lactation) and nonlactating rats received 27 mg/kg ZnCl2 for five consecutive days and 5 mg/kg HgCl2 for five subsequent days. Lactating and nonlactating rats exposed to HgCl2 presented a decrease in food intake, a decrease in plasma alanine aminotransferase (ALT), and an increase in hepatic Hg levels when compared to the control group. Only lactating rats exposed to HgCl2 presented an increase in hepatic δ-aminolevulinic acid dehydratase activity. On the other hand, only nonlactating rats exposed to HgCl2 presented an increase in plasma aspartate aminotransferase (AST). ZnCl2 pre-exposure partially protected the increase in plasma AST activity presented by nonlactating rats and potentiated the liver Hg accumulation in lactating rats. Pups from the Sal–Hg and Zn–Hg groups showed a decrease in absolute liver weight and an increase in liver Hg levels. Summarizing, this study demonstrated that lactating rats presented distinct biochemical responses compared to nonlactating rats exposed to HgCl2 when hepatic parameters were evaluated.  相似文献   

7.
Acute effects of mercuric chloride (HgCl2) were evaluated on mice. Mice received a single dose of HgCl2 (4.6 mg/kg, subcutaneously) for three consecutive days. Thirty minutes after the last injection with HgCl2, mice received one single injection of 2,3-dimercapto-1-propanesulfonic acid (DMPS) or N-acetylcysteine (NAC) or diphenyl diselenide (PhSe)2. DMPS, NAC and (PhSe)2 were utilized as therapy against mercury exposure. At 24 h after the last HgCl2 injection, blood, liver and kidney samples were collected. δ-Aminolevulinate dehydratase (δ-ALA-D) and Na+, K-+ ATPase activities, thiobarbituric acid-reactive substances (TBARS), non-protein thiols (NPSH) and ascorbic acid concentrations were evaluated. Plasma aspartate (AST) and alanine (ALT) aminotransferase activities, as well as urea and creatinine levels were determined. The group of mice exposed to Hg + (PhSe)2 presented 100% of lethality. Exposure with HgCl2 caused a decrease on the body weight gain and treatments did not modify this parameter. δ-ALA-D, AST and ALT activities, TBARS, ascorbic acid levels and NPSH (hepatic and erythrocytic) levels were not changed after HgCl2 exposure. HgCl2 caused an increase in renal NPSH content and therapies did not modify these levels. Mice treated with (PhSe)2, Hg + NAC and Hg + DMPS presented a reduction in plasma NPSH levels. Creatinine and urea levels were increased in mice exposed to Hg + NAC, while Hg + DMPS group presented an increase only in urea level. Na+, K-+ ATPase activity was inhibited in mice exposed to Hg + DMPS and Hg + NAC. In conclusion, therapies with (PhSe)2, DMPS and NAC following mercury exposure must be better studied because the formation of more toxic complexes with mercury, which can mainly damage renal tissue.  相似文献   

8.
The present study was conducted to assess in rats the effects of oral aluminum (Al) exposure on calcium (Ca), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) accumulation and urinary excretion. Three groups of plug-positive Sprague-Dawley (SD) rats were given by gavage 0, 200, and 400 mg/kg/d of Al(OH)3 on gestational days 1–20. Three groups of nonpregnant female SD rats of the same age received Al(OH)3 by gavage at the same doses for 20 consecutive days. At the end of the treatment period, 24-h urine samples were collected for analysis of Al and essential elements. Subsequently, all animals were sacrificed and samples of liver, bone, spleen, kidneys, and brain were removed for metal analyses. With some exceptions, the urinary amounts of Al, Mn, and Cu excreted by pregnant animals as well as the urinary levels of Al excreted by nonpregnant rats were higher in the Al-treated groups than in the respective control groups. Although higher Al levels were found in the liver of pregnant rats, the concentrations of Al in the brain of these animals were lower than those found in the same tissues of nonpregnant rats. With regard to the essential elements, tissue accumulation was most affected in pregnant than in nonpregnant animals. In pregnant rats, the hepatic and renal concentrations of Ca, Mg, Mn, Cu, Zn, and Fe, as well as the levels of Ca in bone, and the concentrations of Cu in brain were significantly higher in the Al-exposed groups than in the control group. According to the current results, oral Al exposure during pregnancy can produce significant changes in the tissue distribution of a number of essential elements.  相似文献   

9.
A sensitive and rapid method to estimate concentrations of functional metallothionein in small biological samples, based upon the acid stability of 203Hg binding and solubility of this protein in trichloroacetic acid is described. Sephadex G-10 minicolumns supported in centrifuge tubes afforded separation and quantitation of isotope bound metallothionein from unbound metal. Elution of metallothionein bound 203Hg was achieved by short term-low speed centrifugation that segregated chelator-ligand complex into the eluate while unbound ligand remained in the gel. A well characterized standard of pure metallothionein protein was utilized to verify the specificity and sensitivity of the modified assay. Metallothionein levels were estimated by 203Hg binding in extracts of wild type and cadmium resistant Chinese hamster ovary cells treated with maximum tolerable concentrations of CdCl2. Similar separation methods demonstrated [35S]-cysteine incorporation into induced metallothionein. Additionally, induction of metallothionein was observed after treatment with particulate CdS but not crystalline NiS particles. These results demonstrate that the modified assay system is easily applied to serial measurement of metallothionein levels in multiple small biological samples.  相似文献   

10.
The interactions between two essential metals, Cu and Zn, and the localization and concentration of metallothionein have been studied in rat liver and kidney. Rats receiving daily intraperitoneal injections of Cu for 3 days, or Zn for 2 days, or Cu for 3 days followed by Zn for 2 days, were sacrificed 24, 72, 120h after the final injection. Our data indicate that Cu and Zn are both good inductors of metallothionein synthesis in rat tissues. Synergism between Cu and Zn in metallothionein synthesis was also observed as indicated by immunocytochemical experiments and chemical analysis. Moreover, in rats injected with Cu followed by Zn, the localization of metallothionein and the concentrations of both metallothionein and metal differed over time according to the organs considered. In rat kidney, a delay in the excretory process was also observed and metallothionein was present 120h after the last injection.  相似文献   

11.
We firstly characterized zinc uptake phenomenon across basolateral membrane vesicles (BLMVs) isolated from normal rat kidney. The process was found to be time, temperature, and substrate concentration dependent, and displayed saturability. Zn2+ uptake was competitively inhibited in the presence of 2 mM Cd with Ki of 3.9 mM. Zinc uptake was also inhibited in the presence of sulfhydryl reacting compound suggesting involvement of {–}SH groups in the transport process. Further, to elucidate the effect of in vivo Cd on zinc transport in BLMVs, Cd nephrotoxicity was induced by subcutaneous administration of CdCl2 at dose of 0.6 mg/kg/d for 5 days in a week for 12 weeks. An indolent renal failure developed in Cd exposed rats was accompanied with a significantly high urinary excretion of Cd2+, Zn2+ and proteins. The histopathology and electron microscopy of kidneys of Cd exposed rats documented changes of proximal tubular degeneration. Notably, Cd content in renal cortex of Cd exposed rats was 215 μg/g tissue that was higher than the critical concentration of Cd in kidneys which was associated with significantly higher Zn and metallothionein (MT) contents. Zinc uptake in BLMVs isolated from kidneys of Cd exposed rats was significantly reduced. Further, kinetic studies revealed that decrease in zinc uptake synchronized with decrease in maximal velocity (Vmax) and increase in affinity constant which is suggestive of decreased number of active zinc transporters. Furthermore, conformational modulation of Zn transporter in BLM was further supported by observed variation in transition temperature for zinc transport in BLMVs isolated from Cd-exposed kidney.  相似文献   

12.
This study investigated the benefits of Cu preexposition on Hg effects on behavioral tests, acetylcholinesterase (AChE) activity and Hg, and essential metal contents in the cerebrum and cerebellum of neonate rats. Wistar rats received (subcutaneous) saline or CuCl2·2H2O (6.9 mg/kg/day) when they were 3 to 7 days old and saline or HgCl2 (5.0 mg/kg/day) when they were 8 to 12 days old. Mercury exposure reduced the performance of rats in the negative geotaxis (3–13 days) and beaker test (17–20 days), inhibited cerebellum AChE activity (13 days), increased cerebrum and cerebellum Hg (13 days), cerebrum Cu (13 days), and cerebrum and cerebellum Zn levels (33 days). The performance of rats in the tail immersion and rotarod tests as well as Fe and Mg levels were not altered by treatments. Copper prevented all alterations induced by mercury. These results are important to open a new perspective of prevention and/or therapy for mercury exposure.  相似文献   

13.
Studies were conducted to determine whether prostaglandins are added to the urine during its passage through the rat urinary blader . Control rats and rats with chronic streptozotocin-induced diabetes were anesthetized with Inactin, 100 mg/kg i.p., and urine was collected simultaneously from both kidneys. Urine from the left kidney was collected directly from the renal pelvis via a ureteral cannula, while urine from the right kidney was collected via a cannula in the urinary bladder. Prostaglandins in the urine were measured by radioimmunoassay. No difference in urinary concentration or rate of excretion of 6-keto-PGF or PGE2 was seen between ureteral urine and bladder urine from either normal or diabetic rats. The results of this study indicate that there is no intralumenal addition of either 6-keto-PGF or PGE2 to the urine by the ureteral bladder of rats.  相似文献   

14.
15.
The purpose of this study was to determine disorders in the metabolism of the essential elements (Ca, Fe, Cu, and Zn) in some tissues of rats, as well as to detect the dynamics of urinary excretion of these metals after oral administration of 20 mgAl/kg every day for 8 wk. The elements were determined in brain, kidneys, blood, and urine of the animals in 1st, 2nd, 3rd, 4th, and 8th wk after the exposure to AlCl3. After the 1st wk of aluminium administration, we observed increase of Ca and a decrease of Fe in blood. In brain Ca, Fe, and Cu concentrations were significantly higher in Al-treated rats than in controls after 8-wk exposure. The concentration changes of the essential metals in the tissue were accompanied by increase of the Ca, Fe, and Zn urinary excretion. We assume that the increase in urinary excretion of Ca and the decrease of Fe in the blood may be sensitive indicators of oral aluminium administration.  相似文献   

16.
This work investigated zinc (Zn) and mercury (Hg) effects on oxidative parameters, markers of toxicity and metal levels in different tissues from non-lactating rats (NLR) and lactating rats (LR). Adult NLR and LR received ZnCl2 (27 mg/kg) or saline (0.9%) subcutaneously and after 24 h they received HgCl2 (5 mg/kg) or saline (0.9%). Twenty four hours later, they were sacrificed and the preparation of biological material and biochemical analyses were performed. With respect to oxidative parameters, Hg exposure decreased kidney total SH levels from NLR and LR and hepatic catalase activity (not statistically significant) in NLR. Zinc pre-treatment partly prevented the decrease of kidney total SH levels in LR. Zinc per se increased hepatic non-protein SH levels of NLR and LR. Regarding toxicity markers, Hg exposure inhibited the δ-aminolevulinic acid dehydratase (δ-ALA-D) activity from kidney and liver of NLR, inhibited serum alanine aminotransferase (ALT) activity of LR and increased serum creatinine and urea levels of NLR and LR. Zinc pre-exposure prevented the enzymatic alterations caused by Hg. NLR and LR Hg exposed presented accumulation of mercury in the kidney, liver, blood and urine. Zinc pre-treatment prevented this accumulation partly in NLR liver and blood and completely in LR kidney and liver. These results show that NLR and LR are differently sensitive to HgCl2 and that ZnCl2 showed a promising effect against Hg toxicity.  相似文献   

17.
The metabolism of203Hg-labeled methylmercury chloride (MeHg) has been studied in rabbits and hamsters. Rabbits were administered 1.6 μmol MeHgCl/kg bw intravenously, and hamsters 40 μmol/kg bw orally. Urine and feces were collected daily and groups of four animals killed after 1 h, 1 d, or 7 d. The concentration of203Hg in blood, liver, kidney, spleen, lung, heart, and brain was determined by gamma counting. In both animal species, the clearance of203Hg in the brain was slower than in other tissues. In the rabbits the brain203Hg concentration increased during the whole experimental period. Rabbits excreted203Hg primarily in feces (about 20% of the dose within 1 wk), and much less in urine (<2%). In contrast, hamsters very efficiently excreted203Hg in urine (50% in 1 wk). The fecal excretion was similar to that of the rabbits. Separation of inorganic Hg and MeHg in urine from hamsters by ion exchange chromatography showed that about 90% of the urinary203Hg was excreted as MeHg.  相似文献   

18.
This work investigated the preventive effect of diphenyl diselenide [(PhSe)2] on renal and hepatic toxicity biomarkers and oxidative parameters in adult mice exposed to mercury chloride (HgCl2). Selenium (Se) and mercury (Hg) determination was also carried out. Mice received a daily oral dose of (PhSe)2 (5.0 mg/kg/day) or canola oil for five consecutive days. During the following five days, the animals were treated with a daily subcutaneous dose of HgCl2 (5.0 mg/kg/day) or saline (0.9%). Twenty-four hours after the last HgCl2 administration, the animals were sacrificed and biological material was obtained. Concerning toxicity biomarkers, Hg exposure inhibited blood δ-aminolevulinic acid dehydratase (δ-ALA-D), serum alanine aminotransferase (ALT) activity and also increased serum creatinine levels. (PhSe)2 partially prevented blood δ-ALA-D inhibition and totally prevented the serum creatinine increase. Regarding the oxidative parameters, Hg decreased kidney TBARS levels and increased kidney non-protein thiol levels, while (PhSe)2 pre-treatment partially protected the kidney thiol levels increase. Animals exposed to HgCl2 presented Hg content accumulation in blood, kidney and liver. The (PhSe)2 pre-treatment increased Hg accumulation in kidney and decreased in blood. These results show that (PhSe)2 can be efficient in protecting against these toxic effects presented by this Hg exposure model.  相似文献   

19.
The elimination, tissue distribution, and metabolism of [1-14C]perfluorooctanoic acid (PFOA) was examined in male and female rats for 28 days after a single ip dose (9.4 μmol/kg, 4 mg/kg). A sex difference in urinary elimination of PFOA-derived 14C was observed. Female rats eliminated PFOA-derived radioactivity rapidly in the urine with 91% of the dose being excreted in the first 24 hr. In the same period, male rats eliminated only 6% of the administered 14C in the urine. The sex-related difference in urinary elimination resulted in the observed difference in the whole-body elimination half-life (t1/2) of PFOA in males (t1/2 = 15 days) and females (t1/2 < 1 day). Analysis of PFOA-derived 14C in tissues showed that the liver and plasma of male rats and the liver, plasma, and kidney of female rats were the primary tissues of distribution. The relatively high concentration of PFOA in the male liver was further examined using an in situ nonrecirculating liver perfusion technique. It was shown that 11% of the PFOA infused was extracted by the liver in a single pass. The ability of the liver to eliminate PFOA into bile was examined in rats whose renal pedicles were ligated to alleviate sex differences in the urinary excretion of PFOA. In a 6-hr period following IP administration of PFOA, there was no apparent difference in biliary excretion, where both males and females eliminated less than 1% of the PFOA dose via this route. We hypothesized that the sex difference in the persistence of PFOA was due to a more rapid formation of a PFOA-containing lipid (i.e., a PFOA-containing mono-, di-, or triacylglycerol, cholesteryl ester, methyl ester, or phospholipid) in the male rat. Also, the increased urinary elimination of PFOA in females may have been due to increased metabolism to a PFOA-glucuronide or sulfate ester. However, no evidence that PFOA is conjugated to form a persistent hybrid lipid was obtained, nor were polar metabolites of PFOA in urine or bile detected. In addition, daily urinary excretion of fluoride in male and female rats before or after PFOA treatment were similar, suggesting that the parent compound is not defluorinated. Thus, the more rapid elimination of PFOA from female rats is not due to formation of a PFOA metabolite.  相似文献   

20.

The toxicity of heavy metals such as mercury (Hg) in humans and animals is well documented. The kidney is the primary deposition site of inorganic-Hg and target organ of its toxicity. The present study investigated the protective efficacy of flaxseed lignan-Secoisolariciresinol diglucoside (SDG) on nephrotoxicity induced by mercuric chloride (HgCl2). Rats were intraperitoneally injected with HgCl2 (2 mg/kg/day) and renal toxicity was induced. Subcutaneous administration of rats with SDG (5 mg/kg/day) as a pre-treatment caused a significant reversal of HgCl2 induced increase in blood urea, creatinine, glutathione s-transferase and catalase (CAT). On the other hand, administration of SDG with HgCl2 restored normal levels of albumin and superoxide dismutase (SOD). Histological examination of kidneys confirmed that pre-treatment of SDG before HgCl2 administration significantly reduced its pathological effects. Thus, the results of the present investigation suggest that SDG can significantly reduce renal damage, serum and tissue biochemical profiles caused by HgCl2 induced nephrotoxicity. Hence, SDG may be recommended for clinical trials in the treatment of kidney disorders caused by exposure to Hg.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号