首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Quadruplex structures that result from stacking of guanine quartets in nucleic acids possess such thermodynamic stability that their resolution in vivo is likely to require specific recognition by specialized enzymes. We previously identified the major tetramolecular quadruplex DNA resolving activity in HeLa cell lysates as the gene product of DHX36 (Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., and Akman, S. A. (2005) J. Biol Chem. 280, 38117-38120), naming the enzyme G4 Resolvase 1 (G4R1). G4R1 is also known as RHAU, an RNA helicase associated with the AU-rich sequence of mRNAs. We now show that G4R1/RHAU binds to and resolves tetramolecular RNA quadruplex as well as tetramolecular DNA quadruplex structures. The apparent K(d) values of G4R1/RHAU for tetramolecular RNA quadruplex and tetramolecular DNA quadruplex were exceptionally low: 39 +/- 6 and 77 +/- 6 Pm, respectively, as measured by gel mobility shift assay. In competition studies tetramolecular RNA quadruplex structures inhibited tetramolecular DNA quadruplex structure resolution by G4R1/RHAU more efficiently than tetramolecular DNA quadruplex structures inhibited tetramolecular RNA quadruplex structure resolution. Down-regulation of G4R1/RHAU in HeLa T-REx cells by doxycycline-inducible short hairpin RNA caused an 8-fold loss of RNA and DNA tetramolecular quadruplex resolution, consistent with G4R1/RHAU representing the major tetramolecular quadruplex helicase activity for both RNA and DNA structures in HeLa cells. This study demonstrates for the first time the RNA quadruplex resolving enzymatic activity associated with G4R1/RHAU and its exceptional binding affinity, suggesting a potential novel role for G4R1/RHAU in targeting in vivo RNA quadruplex structures.  相似文献   

3.
4.
5.
Guanine-quadruplexes (G4) consist of non-canonical four-stranded helical arrangements of guanine-rich nucleic acid sequences. The bulky and thermodynamically stable features of G4 structures have been shown in many respects to affect normal nucleic acid metabolism. In vivo conversion of G4 structures to single-stranded nucleic acid requires specialized proteins with G4 destabilizing/unwinding activity. RHAU is a human DEAH-box RNA helicase that exhibits G4-RNA binding and resolving activity. In this study, we employed RIP-chip analysis to identify en masse RNAs associated with RHAU in vivo. Approximately 100 RNAs were found to be associated with RHAU and bioinformatics analysis revealed that the majority contained potential G4-forming sequences. Among the most abundant RNAs selectively enriched with RHAU, we identified the human telomerase RNA template TERC as a true target of RHAU. Remarkably, binding of RHAU to TERC depended on the presence of a stable G4 structure in the 5'-region of TERC, both in vivo and in vitro. RHAU was further found to associate with the telomerase holoenzyme via the 5'-region of TERC. Collectively, these results provide the first evidence that intramolecular G4-RNAs serve as physiologically relevant targets for RHAU. Furthermore, our results suggest the existence of alternatively folded forms of TERC in the fully assembled telomerase holoenyzme.  相似文献   

6.
RNA and DNA guanine-rich sequences can adopt unusual structures called Guanine quadruplexes (G4). A quadruplex-prone RNA sequence is present at the 5'-end of the 451-nt-long RNA component of telomerase, hTERC. As this quadruplex may interfere with P1 helix formation, a key structural element for this RNA, we are seeking molecules that would alter this RNA duplex-quadruplex equilibrium. In this work, we present a fluorescence-based test designed to identify G4 ligands specific for the hTERC G-rich motif and that can prevent P1 helix formation. From an initial panel of 169 different molecules, 11 were found to be excellent P1 duplex inhibitors. Interestingly, some of the compounds not only exhibit a strong selectivity for quadruplexes over duplexes, but also demonstrated a preference for G4-RNA over all other quadruplexes. This test may easily be adapted to almost any quadruplex-forming sequence and converted into HTS format.  相似文献   

7.
Telomerase promotes telomere maintenance by copying a template within its integral RNA subunit to elongate chromosome ends with new telomeric repeats. Motifs have been defined within the telomerase RNA that contribute to mature RNA accumulation, holoenzyme catalytic activity, or enzyme recruitment to telomeres. Here, we describe a motif of human telomerase RNA (hTR), not previously characterized in a cellular context, comprised of several guanosine tracts near the RNA 5' end. These guanosine tracts together are recognized by the DEXH box RNA helicase DHX36. The helicase domain of DHX36 does not mediate hTR binding; instead, hTR interacts with the N-terminal accessory domain of DHX36 known to bind specifically to the parallel-strand G-quadruplex substrates resolved by the helicase domain. The steady-state level of DHX36-hTR interaction is low, but hTR guanosine tract substitutions substantially reduce mature hTR accumulation and thereby reduce telomere maintenance. These findings suggest that G-quadruplex formation in the hTR precursor improves the escape of immature RNP from degradation, but subsequently the G-quadruplex may be resolved in favor of a longer terminal stem. We conclude that G-quadruplex formation within hTR can stimulate telomerase-mediated telomere maintenance.  相似文献   

8.
In response to environmental stress, the translation machinery of cells is reprogrammed. The majority of actively translated mRNAs are released from polysomes and driven to specific cytoplasmic foci called stress granules (SGs) where dynamic changes in protein-RNA interaction determine the subsequent fate of mRNAs. Here we show that the DEAH box RNA helicase RHAU is a novel SG-associated protein. Although RHAU protein was originally identified as an AU-rich element-associated protein involved in urokinase-type plasminogen activator mRNA decay, it was not clear whether RHAU could directly interact with RNA. We have demonstrated that RHAU physically interacts with RNA in vitro and in vivo through a newly identified N-terminal RNA-binding domain, which was found to be both essential and sufficient for RHAU localization in SGs. We have also shown that the ATPase activity of RHAU plays a role in the RNA interaction and in the regulation of protein retention in SGs. Thus, our results show that RHAU is the fourth RNA helicase detected in SGs, after rck/p54, DDX3, and eIF4A, and that its association with SGs is dynamic and mediated by an RHAU-specific RNA-binding domain.  相似文献   

9.
10.
11.
The AU-rich element (ARE) in the 3' untranslated region of unstable mRNAs mediate their rapid degradation. ARE binding proteins (AUBPs) have been described that either stabilize or otherwise degrade ARE-mRNAs by recruiting the exosome, a complex of 3'-to-5' exoribonucleases. We have identified RHAU, a putative DExH RNA helicase that was isolated in association with the ARE of urokinase plasminogen activator mRNA (ARE(uPA)). RHAU physically interacts with the deadenylase PARN and the human exosome and enhances the deadenylation and decay of ARE(uPA)-mRNAs. An alternatively spliced isoform of RHAU that localized to the cytoplasm had a more pronounced effect on ARE(uPA)-mRNA destabilization than full-length RHAU. Furthermore, the ATPase activity of RHAU is essential for its mRNA-destabilizing function. ARE(uPA)-mRNA recognition by RHAU may be mediated through its RNA-dependent interaction with the AUBPs HuR and NFAR1. A model is presented to describe the action of RHAU in ARE(uPA)-directed mRNA turnover.  相似文献   

12.
13.
G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) – a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5 Å resolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3′-end G•G•G•G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5′-end G•G•G•G and G•G•A•T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.  相似文献   

14.
Mtr4 is a conserved Ski2-like RNA helicase and a subunit of the TRAMP complex that activates exosome-mediated 3′-5′ turnover in nuclear RNA surveillance and processing pathways. Prominent features of the Mtr4 structure include a four-domain ring-like helicase core and a large arch domain that spans the core. The ‘ratchet helix’ is positioned to interact with RNA substrates as they move through the helicase. However, the contribution of the ratchet helix in Mtr4 activity is poorly understood. Here we show that strict conservation along the ratchet helix is particularly extensive for Ski2-like RNA helicases compared to related helicases. Mutation of residues along the ratchet helix alters in vitro activity in Mtr4 and TRAMP and causes slow growth phenotypes in vivo. We also identify a residue on the ratchet helix that influences Mtr4 affinity for polyadenylated substrates. Previous work indicated that deletion of the arch domain has minimal effect on Mtr4 unwinding activity. We now show that combining the arch deletion with ratchet helix mutations abolishes helicase activity and produces a lethal in vivo phenotype. These studies demonstrate that the ratchet helix modulates helicase activity and suggest that the arch domain plays a previously unrecognized role in unwinding substrates.  相似文献   

15.
16.
17.
Analysis of the structure of human telomerase RNA in vivo   总被引:12,自引:2,他引:10       下载免费PDF全文
  相似文献   

18.
19.
The enzyme telomerase is a ribonucleoprotein that has a critical role in the maintenance of stable telomeres in organisms that possess linear chromosomes. Using a recently developed single molecule fluorescence coincidence method, we have studied the RNA component of telomerase (hTR) and directly observed multimerisation of hTR in solution. RNA mutagenesis and blocking oligonucleotides were employed to identify the single-stranded internal loop J7b/8a as an important and specific hTR·hTR interaction site. This observation was confirmed by studies on a model RNA fragment (hTR380–444), comprising part of the H/ACA domain, the internal loop J7b/8a and the CR7 domain, that was found to dimerise. Substitution mutagenesis within the proposed RNA·RNA interaction site of hTR380–444 resulted in a loss of dimerisation potential and insertion of the dyskeratosis congenita mutation C408G led to a significant reduction in dimer formation. Together, these results suggest that this RNA·RNA interaction site may be functionally relevant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号