首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Aspartate transcarbamylase (EC 2.1.3.2) from E. coli is a multimeric enzyme consisting of two catalytic subunits and three regulatory subunits whose activity is regulated by subunit interactions. Differential scanning calorimetric (DSC) scans of the wild-type enzyme consist of two peaks, each comprised of at least two components, corresponding to denaturation of the catalytic and regulatory subunits within the intact holoenzyme (Vickers et al., J. Biol. Chem. 253 (1978) 8493; Edge et al., Biochemistry 27 (1988) 8081). We have examined the effects of nine single-site mutations in the catalytic chains. Three of the mutations (Asp-100-Gly, Glu-86-Gln, and Arg-269-Gly) are at sites at the C1: C2 interface between c chains within the catalytic subunit. These mutations disrupt salt linkages present in both the T and R states of the molecule (Honzatko et al., J. Mol. Biol. 160 (1982) 219; Krause et al., J. Mol. Biol. 193 (1987) 527). The remainder (Lys-164-Ile, Tyr-165-Phe, Glu-239-Gln, Glu-239-Ala, Tyr-240-Phe and Asp-271-Ser) are at the C1: C4 interface between catalytic subunits and are involved in interactions which stabilize either the T or R state. DSC scans of all of the mutants except Asp-100-Gly and Arg-269-Gly consisted of two peaks. At intermediate concentrations, Asp-100-Gly and Arg-269-Gly had only a single peak near the Tm of the regulatory subunit transition in the holoenzyme, although their denaturational profiles were more complex at high and low protein concentrations. The catalytic subunits of Glu-86-Gln, Lys-164-Ile and Asp-271-Ser appear to be significantly destabilized relative to wild-type protein while Tyr-165-Phe and Tyr-240-Phe appear to be stabilized. Values of delta delta G degree cr, the difference between the subunit interaction energy of wild-type and mutant proteins, evaluated as suggested by Brandts et al. (Biochemistry 28 (1989) 8588) range from -3.7 kcal mol-1 for Glu-86-Gln to 2.4 kcal mol-1 for Tyr-165-Phe.  相似文献   

2.
The beta-galactosidases from Xanthomonas manihotis (beta-Gal Xmn) and Bacillus circulans (beta-Gal-3 Bcir) are retaining glycosidases that hydrolyze glycosidic bonds through a double displacement mechanism involving a covalent glycosyl-enzyme intermediate. The mechanism-based inactivator 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside was shown to inactivate beta-Gal Xmn and beta-Gal-3 Bcir through the accumulation of 2-deoxy-2-fluorogalactosyl enzyme intermediates with half lives of 40 and 625 h, respectively. Peptic digestion of these labeled enzymes and analysis by LC-MS identified Glu(260) and Glu(233) as the catalytic nucleophiles involved in the formation of the glycosyl-enzyme intermediate during catalysis by beta-Gal Xmn and beta-Gal-3 Bcir, respectively. These findings confirm the previous prediction of the position of these residues based on primary sequence similarities to other members of the glycoside hydrolase family 35.  相似文献   

3.
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to family 57 of glycoside hydrolases and catalyzes the disproportionation and cycloamylose synthesis reactions. Family 57 glycoside hydrolases have not been well investigated, and even the catalytic mechanism involving the active site residues has not been studied. Using 3-ketobutylidene-beta-2-chloro-4-nitrophenyl maltopentaoside (3KBG5CNP) as a donor and glucose as an acceptor, we showed that the disproportionation reaction of TLGT involves a ping-pong bi-bi mechanism. On the basis of this reaction mechanism, the glycosyl-enzyme intermediate, in which a donor substrate was covalently bound to the catalytic nucleophile, was trapped by treating the enzyme with 3KBG5CNP in the absence of an acceptor and was detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry after peptic digestion. Postsource decay analysis suggested that either Glu-123 or Glu-129 was the catalytic nucleophile of TLGT. Glu-123 was completely conserved between family 57 enzymes, and the catalytic activity of the E123Q mutant enzyme was greatly decreased. On the other hand, Glu-129 was a variable residue, and the catalytic activity of the E129Q mutant enzyme was not decreased. These results indicate that Glu-123 is the catalytic nucleophile of TLGT. Sequence alignment of TLGT and family 38 enzymes (class II alpha-mannosidases) revealed that Glu-123 of TLGT corresponds to the nucleophilic aspartic acid residue of family 38 glycoside hydrolases, suggesting that family 57 and 38 glycoside hydrolases may have had a common ancestor.  相似文献   

4.
Ashida H  Maskos K  Li SC  Li YT 《Biochemistry》2002,41(7):2388-2395
In contrast to the beta-linked GlcNAc, the alpha-linked GlcNAc has not been commonly found in glycoconjugates. We have recently revealed the presence of an unusual endo-beta-galactosidase (Endo-beta-Gal(GnGa)) in Clostridium perfringens capable of releasing GlcNAcalpha1-->4Gal from glycans expressed in the gastric mucous cell-type mucin [Ashida, H., Anderson, K., Nakayama, J., Maskos, K., Chou, C.-W., Cole, R. B., Li, S.-C., and Li, Y.-T. (2001) J. Biol. Chem. 276, 28226-28232]. To characterize Endo-beta-Gal(GnGa), we have cloned its gene, gngC, from the genomic DNA library prepared from C. perfringens ATCC10543. The gene encodes 420 amino acid residues including a 17-residue signal peptide at the N-terminus. Using pUC18, we were able to prepare 25 mg of the fully active and pure recombinant Endo-beta-Gal(GnGa) from 1 L of Escherichia coli DH5alpha culture, which was 170 times higher than that produced by the original clostridial strain. Endo-beta-Gal(GnGa) shares a low but significant sequence similarity with two other endo-beta-galactosidases (16-21% amino acid identity). It also shows some similarity with bacterial 1,3-1,4-beta-glucan 4-glucanohydrolases of the glycoside hydrolase family 16. Endo-beta-Gal(GnGa) was found to contain the EXDX(X)E sequence (Glu-168 to Glu-173), that has been identified as the catalytic motif of families 16 and 7 retaining glycoside hydrolases. We have used site-directed mutagenesis to show that Glu-168 and Glu-173 were essential for the Endo-beta-Gal(GnGa) activity. By NMR spectroscopy, Endo-beta-Gal(GnGa) was found to act as a retaining enzyme.  相似文献   

5.
The covalent intermediate formed during catalysis by the lac Z beta-galactosidase from Escherichia coli can be trapped by reaction of the enzyme with 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside, thereby inactivating the enzyme. Kinetic parameters for this inactivation process with the holo- and apo-enzymes have been determined. The intermediate so formed turns over only very slowly (t1/2 = 11.5 h) resulting in reactivation of the enzyme. The nucleophilic amino acid involved has been identified as Glu-537 by using a tritium-labeled inactivator to label the enzyme, then cleaving the labeled protein into peptides and purifying and sequencing the labeled peptide. This residue is conserved in five homologous beta-galactosidases and is different from that (Glu-461) proposed to be the nucleophile (Herrchen, M., and Legler, G. (1984) Eur. J. Biochem. 138, 527-531) on the basis of affinity labeling studies with conduritol C cis-epoxide. A role for glutamic acid residue 461 as the acid/base catalyst is proposed and justified.  相似文献   

6.
The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103'). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103' activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103' distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor.  相似文献   

7.
The Lactobacillus bulgaricus beta-galactosidase gene was cloned on a ca. 7-kilobase-pair HindIII fragment in the vector pKK223-3 and expressed in Escherichia coli by using its own promoter. The nucleotide sequence of the gene and approximately 400 bases of 3'- and 5'-flanking sequences was determined. The amino acid sequence of the beta-galactosidase, deduced from the nucleotide sequence of the gene, yielded a monomeric molecular mass of ca. 114 kilodaltons, slightly smaller than the E. coli lacZ and Klebsiella pneumoniae lacZ enzymes but larger than the E. coli evolved (ebgA) beta-galactosidase. The cloned beta-galactosidase was found to be indistinguishable from the native enzyme by several criteria. From amino acid sequence alignments, the L. bulgaricus beta-galactosidase has a 30 to 34% similarity to the E. coli lacZ, E. coli ebgA, and K. pneumoniae lacZ enzymes. There are seven regions of high similarity common to all four of these beta-galactosidases. Also, the putative active-site residues (Glu-461 and Tyr-503 in the E. coli lacZ beta-galactosidase) are conserved in the L. bulgaricus enzyme as well as in the other two beta-galactosidases mentioned above. The conservation of active-site amino acids and the large regions of similarity suggest that all four of these beta-galactosidases evolved from a common ancestral gene. However, these enzymes are quite different from the thermophilic beta-galactosidase encoded by the Bacillus stearothermophilus bgaB gene.  相似文献   

8.
The galactosyl transfer reaction to branched cyclodextrins (CDs) was investigated using lactose as a donor substrate and branched CDs as acceptors by various beta-galactosidases. Bacillus circulans beta-galactosidase synthesized galactosyl transfer products to branched CDs, of which the galactose residues were linked at side chains of branched CDs, not directly at CD rings. Aspergillus oryzae and Penicillium multicolor beta-galactosidases also produced derivatives galactosylated at side chains of branched CDs. The structures of main transgalactosylation products of branched CDs by these beta-galactosidases seem to be different from those by B. circulans beta-galactosidase, judging from the retention times on high performance liquid chromatography.  相似文献   

9.
The gene glpK, encoding glycerol kinase (GlpK) of Thermus aquaticus, has recently been identified. The protein encoded by glpK was found to have an unusually high identity of 81% with the sequence of GlpK from Bacillus subtilis. Three residues (Arg-82, Glu-83, and Asp-244) of T. aquaticus GlpK are conserved in all the known GlpK sequences, including those from various bacteria, yeast and human. The roles that these three residues play in the catalytic mechanism were investigated by using site-directed mutagenesis to produce three mutants: Arg-82-Ala, Glu-83-Ala, and Asp-244-Ala. Replacement of Asp-244 by Ala resulted in a complete loss of activity, thus suggesting that Asp-244 is important for catalysis. Taking k(cat)/K(m) as a simple measure of catalytic efficiency, the mutants Arg-82-Ala and Glu-83-Ala were judged to cause 190- and 37,000-fold decrease, respectively, when compared to the wild-type GlpK. Thus, these three residues play a critical role in the catalytic mechanism. However, only mutant Glu-83-Ala was cleaved by alpha-chymotrypsin, and proteolysis studies showed that the mutant Glu-83-Ala involves a change in the exposure of Tyr-331 at the alpha-chymotrypsin site. This indicates a large domain conformational change, since the residues corresponding to Glu-83 and Tyr-331 in the Escherichia coli GlpK sequence are located in domain IB and domain IIB, respectively. The apparent conformational change caused by replacement of Glu-83 leads us to propose that Glu-83 is an important residue for stabilization of domain conformation.  相似文献   

10.
Bovine adrenodoxin in the reduced form has been measured by one- and two-dimensional 1H NMR spectroscopy. By comparing the spectrum of reduced adrenodoxin with that of the oxidized protein, resonances have been assigned for the aromatic residues. The spin-lattice relaxation time for the resonances due to histidine residues was found to depend on the reduction state of adrenodoxin. The distance from the paramagnetic center is calculated by using the Solomone-Bloembergen equation. The resonances from Tyr-82 and Ala-81 show large chemical shift changes upon reduction of adrenodoxin. The conformational change of adrenodoxin manifested by chemical shift difference between reduced and oxidized forms is found in the sequence around Tyr-82 and Ala-81. Modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at Glu-74, Asp-79, and Asp-86 inhibited the interaction with both adrenodoxin reductase and cytochrome P-450scc (Lambeth, D. J., Geren, L. M., and Millett, F. (1984) J. Biol. Chem. 259, 10025-10029; Geren, L. M., O'Brien, P., Stonehuerner, J., and Millett, F. (1984) J. Biol. Chem. 259, 2155-2160). Thus, the sequence of these amino acids was assigned to the interaction site with the redox partners. The present 1H NMR investigation of adrenodoxin demonstrates that a conformational change upon reduction of the iron-sulfur cluster occurs in the sequence of negatively charged amino acids that is a putative site for interaction with redox partners. This could offer the structural basis of the electron transfer mechanism in which adrenodoxin functions as a mobile electron carrier.  相似文献   

11.
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide.  相似文献   

12.
Three beta-galactosidase genes from Bifidobacterium bifidum DSM20215 and one beta-galactosidase gene from Bifidobacterium infantis DSM20088 were isolated and characterized. The three B. bifidum beta-galactosidases exhibited a low degree of amino acid sequence similarity to each other and to previously published beta-galactosidases classified as family 2 glycosyl hydrolases. Likewise, the B. infantis beta-galactosidase was distantly related to enzymes classified as family 42 glycosyl hydrolases. One of the enzymes from B. bifidum, termed BIF3, is most probably an extracellular enzyme, since it contained a signal sequence which was cleaved off during heterologous expression of the enzyme in Escherichia coli. Other exceptional features of the BIF3 beta-galactosidase were (i) the monomeric structure of the active enzyme, comprising 1,752 amino acid residues (188 kDa) and (ii) the molecular organization into an N-terminal beta-galactosidase domain and a C-terminal galactose binding domain. The other two B. bifidum beta-galactosidases and the enzyme from B. infantis were multimeric, intracellular enzymes with molecular masses similar to typical family 2 and family 42 glycosyl hydrolases, respectively. Despite the differences in size, molecular composition, and amino acid sequence, all four beta-galactosidases were highly specific for hydrolysis of beta-D-galactosidic linkages, and all four enzymes were able to transgalactosylate with lactose as a substrate.  相似文献   

13.
The effects of amino acid substitutions in the carboxyl terminal region of the H(+)-ATPase a subunit (271 amino acid residues) of Escherichia coli were studied using a defined expression system for uncB genes coded by recombinant plasmids. The a subunits with the mutations, Tyr-263----end, Trp-231----end, Glu-219----Gln, and Arg-210----Lys (or Gln) were fully defective in ATP-dependent proton translocation, and those with Gln-252----Glu (or Leu), His-245----Glu, Pro-230----Leu, and Glu-219----His were partially defective. On the other hand, the phenotypes of the Glu-269----end, Ser-265----Ala (or end), and Tyr-263----Phe mutants were essentially similar to that of the wild-type. These results suggested that seven amino acid residues between Ser-265 and the carboxyl terminus were not required for the functional proton pathway but that all the other residues except Arg-210, Glu-219, and His-245 were required for maintaining the correct conformation of the proton pathway. The results were consistent with a report that Arg-210 is directly involved in proton translocation.  相似文献   

14.
Glycoside hydrolases that release fixed carbon from the plant cell wall are of considerable biological and industrial importance. These hydrolases contain non-catalytic carbohydrate binding modules (CBMs) that, by bringing the appended catalytic domain into intimate association with its insoluble substrate, greatly potentiate catalysis. Family 6 CBMs (CBM6) are highly unusual because they contain two distinct clefts (cleft A and cleft B) that potentially can function as binding sites. Henshaw et al. (Henshaw, J., Bolam, D. N., Pires, V. M. R., Czjzek, M., Henrissat, B., Ferreira, L. M. A., Fontes, C. M. G. A., and Gilbert, H. J. (2003) J. Biol. Chem. 279, 21552-21559) show that CmCBM6 contains two binding sites that display both similarities and differences in their ligand specificity. Here we report the crystal structure of CmCBM6 in complex with a variety of ligands that reveals the structural basis for the ligand specificity displayed by this protein. In cleft A the two faces of the terminal sugars of beta-linked oligosaccharides stack against Trp-92 and Tyr-33, whereas the rest of the binding cleft is blocked by Glu-20 and Thr-23, residues that are not present in CBM6 proteins that bind to the internal regions of polysaccharides in cleft A. Cleft B is solvent-exposed and, therefore, able to bind ligands because the loop, which occludes this region in other CBM6 proteins, is much shorter and flexible (lacks a conserved proline) in CmCBM6. Subsites 2 and 3 of cleft B accommodate cellobiose (Glc-beta-1,4-Glc), subsite 4 will bind only to a beta-1,3-linked glucose, whereas subsite 1 can interact with either a beta-1,3- or beta-1,4-linked glucose. These different specificities of the subsites explain how cleft B can accommodate beta-1,4-beta-1,3- or beta-1,3-beta-1,4-linked gluco-configured ligands.  相似文献   

15.
Two mutant versions of Escherichia coli aspartate transcarbamylase were created by site-specific mutagenesis. Arg-234 of the 240s loop was replaced by serine in order to help deduce the function of the interactions that normally occur between Arg-234 and both Glu-50 and Gln-231 in the R state of the enzyme. The other mutation involved the replacement of Asp-271 by asparagine to further test the functional importance of the Tyr-240-Asp-271 link that has previously been proposed to stabilize the T state of the enzyme [Middleton, S. A., & Kantrowitz, E. R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5866-5870]. The Arg-234----Ser holoenzyme exhibits no cooperativity, a 24-fold reduction in maximal velocity, normal affinity for carbamyl phosphate, and substantially reduced affinity for aspartate and N-(phosphonoacetyl)-L-aspartate (PALA). Unlike the wild-type enzyme, the heterotropic effectors ATP and CTP are able to influence the activity of the Arg-234----Ser enzyme at saturating aspartate concentrations. The Arg-234----Ser catalytic subunit exhibits a 33-fold reduction in maximal activity, an aspartate Km of 261 mM, compared to 5.7 mM for the wild-type catalytic subunit, and only a small alteration in the Km for carbamyl phosphate. Together these results provide additional evidence that the interdomain bridging interactions between Glu-50 of the carbamyl phosphate domain and both Arg-167 and Arg-234 of the aspartate domain are necessary for the stabilization of the high-activity-high-affinity configuration of the active site of the enzyme. Furthermore, without the interdomain bridging interactions, the holoenzyme no longer exhibits homotropic cooperativity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

17.
Basran J  Fullerton S  Leys D  Scrutton NS 《Biochemistry》2006,45(37):11151-11161
Residues His-225 and Tyr-259 are located close to the FAD in the dehydrogenase active site of the bifunctional dimethylglycine oxidase (DMGO) of Arthrobacter globiformis. We have suggested [Leys, D., Basran, J., and Scrutton, N. S. (2003) EMBO J. 22, 4038-4048] that these residues are involved in abstraction of a proton from the substrate amine group of dimethylglycine prior to C-H bond breakage and FAD reduction. To investigate this proposal, we have isolated two mutant forms of DMGO in which (i) His-225 is replaced with Gln-225 (H225Q mutant) and (ii) Tyr-259 is replaced with Phe-259 (Y259F mutant). Both mutant enzymes retain the ability to oxidize substrate, but the steady-state turnover of the Y259F mutant is attenuated more than 200-fold. Only modest changes in kinetic parameters are observed for the H225Q mutant during steady-state turnover. Stopped-flow studies indicate that the rate of FAD reduction in the Y259F enzyme is substantially impaired by a factor of approximately 1500 compared with that of the wild-type enzyme, suggesting a key role for this residue in the reductive half-reaction of the enzyme. The kinetics of FAD reduction in the H225Q enzyme are complex and involve three discrete kinetic phases that are attributed to different conformational states of this mutant, evidence for which is provided by crystallographic analysis. Neither the H225Q enzyme nor the Y259F enzyme stabilizes the FADH(2)-iminium charge-transfer complex observed previously in stopped-flow studies with the wild-type enzyme. Our studies are consistent with a key role for Tyr-259, but not His-225, in deprotonation of the substrate amine group prior to FAD reduction. We infer that residue His-225 is likely to modulate the acid-base properties of Tyr-259 by perturbing the pK(a) of Tyr-259 and thus fine-tunes the reaction chemistry to facilitate proton abstraction under physiological conditions. Our data are discussed in the context of the crystallographic data for DMGO and also in relation to contemporary mechanisms for flavoprotein-catalyzed oxidation of amine substrates.  相似文献   

18.
Fructosyltransferases catalyze the transfer of a fructose unit from one sucrose/fructan to another and are engaged in the production of fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase family 32 (GH32) with a retaining catalytic mechanism. Here we describe the crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus japonicus CB05 and its mutant D191A complexes with various donor/acceptor substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the first structure of fructosyltransferase of the GH32 with a high transfructosylation activity. The structure of AjFT comprises two domains with an N-terminal catalytic domain containing a five-blade β-propeller fold linked to a C-terminal β-sandwich domain. Structures of various mutant AjFT-substrate complexes reveal complete four substrate-binding subsites (−1 to +3) in the catalytic pocket with shapes and characters distinct from those of clan GH-J enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile, transition-state stabilizer, and general acid/base catalyst, respectively, govern the binding of the terminal fructose at the −1 subsite and the catalytic reaction. Mutants D60A, D191A, and E292A completely lost their activities. Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose, whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type substrates with higher structural flexibilities. Structural geometries of 1-kestose, nystose and raffinose are different from previous data. All results shed light on the catalytic mechanism and substrate recognition of AjFT and other clan GH-J fructosyltransferases.  相似文献   

19.
Long chain curarimimetic toxins from snake venom bind with high affinities to both muscular type nicotinic acetylcholine receptors (AChRs) (K(d) in the pm range) and neuronal alpha 7-AChRs (K(d) in the nm range). To understand the molecular basis of this dual function, we submitted alpha-cobratoxin (alpha-Cbtx), a typical long chain curarimimetic toxin, to an extensive mutational analysis. By exploring 36 toxin mutants, we found that Trp-25, Asp-27, Phe-29, Arg-33, Arg-36, and Phe-65 are involved in binding to both neuronal and Torpedo (Antil, S., Servent, D., and Ménez, A. (1999) J. Biol. Chem. 274, 34851-34858) AChRs and that some of them (Trp-25, Asp-27, and Arg-33) have similar binding energy contributions for the two receptors. In contrast, Ala-28, Lys-35, and Cys-26-Cys-30 selectively bind to the alpha 7-AChR, whereas Lys-23 and Lys-49 bind solely to the Torpedo AChR. Therefore, alpha-Cbtx binds to two AChR subtypes using both common and specific residues. Double mutant cycle analyses suggested that Arg-33 in alpha-Cbtx is close to Tyr-187 and Pro-193 in the alpha 7 receptor. Since Arg-33 of another curarimimetic toxin is close to the homologous alpha Tyr-190 of the muscular receptor (Ackermann, E. J., Ang, E. T. H., Kanter, J. R., Tsigelny, I., and Taylor, P. (1998) J. Biol. Chem. 273, 10958-10964), toxin binding probably occurs in homologous regions of neuronal and muscular AChRs. However, no coupling was seen between alpha-Cbtx Arg-33 and alpha 7 receptor Trp-54, Leu-118, and Asp-163, in contrast to what was observed in a homologous situation involving another toxin and a muscular receptor (Osaka, H., Malany, S., Molles, B. E., Sine, S. M., and Taylor, P. (2000) J. Biol. Chem. 275, 5478-5484). Therefore, although occurring in homologous regions, the detailed modes of toxin binding to alpha 7 and muscular receptors are likely to be different. These data offer a molecular basis for the design of toxins with predetermined specificities for various members of the AChR family.  相似文献   

20.
The galactosyl transfer reaction to cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->] (CTS) was examined using lactose as a donor and beta-galactosidases from Aspergillus oryzae and Bacillus circulans. The A. oryzae beta-galactosidase produced three galactosyl derivatives of CTS. The main galactosyl derivative produced by the A. oryzae enzyme was identified as 6-O-beta-D-galactopyranosyl-CTS, cyclo-[-->6)-alpha-D-Glcp-(1-->3)-[beta-D-Galp-(1-->6)]-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. The B. circulans beta-galactosidase also synthesized three galactosyl-transfer products to CTS. The structure of main transgalactosylation product was 3-O-beta-D-galactopyranosyl-CTS, cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-[beta-D-Galp-(1-->3)]-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. These results showed that beta-galactosidase transferred galactose directly to the ring glucose residue of CTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号