首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Twelve middle-distance runners, each having recently completed a competitive track season, were divided into two groups matched for maximal oxygen uptake (VO2max), 2-mile run time and age. Group 1 trained for 3 wk at Davis, PB = 760 mmHg, running 19.3 km/day at 75% of sea-level (SL) VO2max, while group 2 trained an equivalent distance at the same relative intensity at the US Air Force Academy (AFA), PB = 586 mmHg. The groups then exchanged sites and followed a training program of similar intensity to the group preceding it for an additional 3 wk. Periodic near exhaustive VO2max treadmill tests and 2-mile competitive time trials were completed. Initial 2-mile times at the AFA were 7.2% slower than SL control. Both groups demonstrated improved performance in the second trial at the AFA (chi = 2.0%), but mean postaltitude performance was unchanged from SL control. VO2max at the AFA was reduced initially 17.4% from SL control, but increased 2.6% after 20 days. However, postaltitude VO2max was 2.8% below SL control. It is concluded that there is no potentiating effect of hard endurance training at 2,300-m over equivalently severe SL training on SL VO2max or 2-mile performance time in already well conditioned middle-distance runners.  相似文献   

2.
Maximal and submaximal metabolic and cardiovascular measures and work capacity were studied in control (n = 7) and experimental (n = 9) subjects (S's) during arm work prior to and following 10 wk of interval arm training. These measures were oxygen uptake (VO2), minute ventilation (VE), heart rate (HR), respiratory exchange ratio (R), cardiac output (Q), stroke volume (SV), and arteriovenous oxygen difference ((a--v)O2 diff). In addition, maximal oxygen uptake (VO2max) was measured in both groups during treadmill running. Experimental S's showed significant increases (P less than 0.01) in peak VO2 (438 ml.min-1), max VE (17.7 l.min-1), max (a--v)O2 diff (20.8 ml.l-1), and work time (9.2 min) during arm ergometry, while maximum values of Q, SV, HR, and R remained unchanged. In addition, submaximal heart rates were significantly lower during arm ergometry after training. VO2max during treadmill running remained essentially unchanged. No changes in metabolic and physiological measures were noted for the controls after the 10-wk training period. The results support the concept of training specificity for VO2max, and indicate that the improvement in peak VO2 in arm ergometry reflects enhanced oxygen utilization due to an expanded (a--v)O2 diff.  相似文献   

3.
Fifty-five male runners aged between 30 to 80 years were examined to determine the relative roles of various cardiovascular parameters which may account for the decrease in maximal oxygen uptake (VO2max) with aging. All subjects had similar body fat composition and trained for a similar mileage each week. The parameters tested were VO2max, maximal heart rate (HRmax), cardiac output (Q), and arteriovenous difference in oxygen concentration (Ca-Cv)O2 during graded, maximal treadmill running. Average body fat and training mileage were roughly 12% and 50 km.week-1, respectively. The average 10-km run-time slowed significantly by 6.0%.decade-1 [( 10-km run-time (min) = 0.323 x age (years) + 24.4] (n = 49, r = 0.692, p less than 0.001]. A strong correlation was found between age and VO2max [( VO2max (ml.kg-1.min-1) = -0.439 x age + 76.5] (n = 55, r = -0.768, p less than 0.001]. Thus, VO2max decreased by 6.9%.decade-1 along with reductions of HRmax (3.2%.decade-1, p less than 0.001) and Q (5.8%.decade-1, p less than 0.001), while no significant change with age was observed in estimated (Ca-Cv)O2. It was concluded that the decline of VO2max with aging in runners was mainly explained by the central factors (represented by the decline of HR and Q in this study), rather than by the peripheral factor (represented by (Ca-Cv)O2).  相似文献   

4.
Longitudinal alterations in anaerobic threshold (AT) and distance running performance were assessed three times within a 4-month period of intensive training, using 20 male, trained middle-distance runners (19-23 yr). A major effect of the high intensity regular intensive training together with 60- to 90-min AT level running training (2 d X wk-1) was a significant increase in the amount of O2 uptake corresponding to AT (VO2 AT; ml O2 X min-1 X kg-1) and in maximal oxygen uptake (VO2max; ml O2 X min-1 X kg-1). Both VO2 AT and VO2max showed significant correlations (r = -0.69 to -0.92 and r = -0.60 to -0.85, respectively) with the 10,000 m run time in every test. However, further analyses of the data indicate that increasing VO2 AT (r = -0.63, P less than 0.05) rather than VO2max (r = -0.15) could result in improving the 10,000 m race performance to a larger extent, and that the absolute amount of change (delta) in the 10,000 m run time is best accounted for by a combination of delta VO2 AT and delta 5,000 m run time. Our data suggest that, among runners not previously trained over long distances, training-induced alterations in AT in response to regular intensive training together with AT level running training may contribute significantly to the enhancement of AT and endurance running performance, probably together with an increase in muscle respiratory capacity.  相似文献   

5.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

6.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

7.
This double-blind, randomized, placebo-controlled trial examined the effects of 4 wk of resting exposure to intermittent hypobaric hypoxia (IHE, 3 h/day, 5 days/wk at 4,000-5,500 m) or normoxia combined with training at sea level on performance and maximal oxygen transport in athletes. Twenty-three trained swimmers and runners completed duplicate baseline time trials (100/400-m swims, or 3-km run) and measures for maximal oxygen uptake (VO(2max)), ventilation (VE(max)), and heart rate (HR(max)) and the oxygen uptake at the ventilatory threshold (VO(2) at VT) during incremental treadmill or swimming flume tests. Subjects were matched for sex, sport, performance, and training status and divided randomly between hypobaric hypoxia (Hypo, n = 11) and normobaric normoxia (Norm, n = 12) groups. All tests were repeated within the first (Post1) and third weeks (Post2) after the intervention. Time-trial performance did not improve in either group. We could not detect a significant difference between groups for a change in VO(2max), VE(max), HR(max), or VO(2) at VT after the intervention (group x test interaction P = 0.31, 0.24, 0.26, and 0.12, respectively). When runners and swimmers were considered separately, Hypo swimmers appeared to increase VO(2max) (+6.2%, interaction P = 0.07) at Post2 following a precompetition taper and increased VO(2) at VT (+8.9 and +12.1%, interaction P = 0.007 and 0.006, at Post1 and Post2). We conclude that this "dose" of IHE was not sufficient to improve performance or oxygen transport in this heterogeneous group of athletes. Whether there are potential benefits of this regimen for specific sports or training/tapering strategies may require further study.  相似文献   

8.
Fifteen highly trained distance runners VO(2)max 71.1 +/- 6.0 ml.min(-1).kg(-1), mean +/- SD) were randomly assigned to a plyometric training (PLY; n = 7) or control (CON; n = 8) group. In addition to their normal training, the PLY group undertook 3 x 30 minutes PLY sessions per week for 9 weeks. Running economy (RE) was assessed during 3 x 4 minute treadmill runs (14, 16, and 18 km.h(-1)), followed by an incremental test to measure VO(2)max. Muscle power characteristics were assessed on a portable, unidirectional ground reaction force plate. Compared with CON, PLY improved RE at 18 km.h(-1) (4.1%, p = 0.02), but not at 14 or 16 km.h(-1). This was accompanied by trends for increased average power during a 5-jump plyometric test (15%, p = 0.11), a shorter time to reach maximal dynamic strength during a strength quality assessment test (14%, p = 0.09), and a lower VO(2)-speed slope (14%, p = 0.12) after 9 weeks of PLY. There were no significant differences in cardiorespiratory measures or VO(2)max as a result of PLY. In a group of highly-trained distance runners, 9 weeks of PLY improved RE, with likely mechanisms residing in the muscle, or alternatively by improving running mechanics.  相似文献   

9.
This study assessed the hemodynamic responses to exercise of master athletes (56 +/- 5 yr of age) who placed in the top 10% of their age groups in local 10-km competitive events, competitive young runners (26 +/- 3 yr), young runners matched in training and performance to the master athletes (25 +/- 3 yr), and healthy older sedentary subjects (58 +/- 5 yr). The maximal O2 consumption (VO2max) of the master athletes was 9 and 19% lower than that of the matched young and competitive young runners, respectively. When compared at the same relative submaximal work rates, these three groups had similar stroke volumes and arteriovenous O2 (aVO2) differences, though the master athletes had lower VO2, cardiac output, and heart rate, and higher vascular resistance. The older sedentary group had a lower stroke volume, aVO2 difference, and higher vascular resistance than the master athletes. Maximal stroke volume and estimated aVO2 difference were the same in the three groups of athletes; the lower maximal heart rate of the master athletes appears to account for their lower VO2max. The older sedentary subjects' VO2max was 47% lower than that of the master athletes; this difference was almost equally the result of a lower stroke volume and a lower a-VO2 difference. Thus these older athletes did not exhibit the decline in maximum stroke volume and aVO2 difference that occurs with aging in sedentary individuals; they also appear to have retained a greater peripheral vasodilatory response than their sedentary peers.  相似文献   

10.
The responses of serum myocellular proteins and hormones to exercise were studied in ten well-trained middle-distance runners [maximal oxygen consumption (VO(2max)) = 69.4 (5.1) ml x kg(-1) x min(-1)] during 3 recovery days and compared to various measures of physical performance. The purpose was to establish the duration of recovery from typical intermittent middle-distance running exercises. The subjects performed, in random, order two 28-min treadmill running exercises at a velocity associated with VO(2max): 14 bouts of 60-s runs with 60 s of rest between each run (IR(60)) and 7 bouts of 120-s runs with 120 s of rest between each run (IR(120)). Before the exercises (pre- exercise), 2 h after, and 1, 2 and 3 days after the exercises, the same series of measurements were performed, including those for serum levels of the myocellular proteins creatine kinase, myoglobin and carbonic anhydrase III (S-CK, S-Mb and S-CA III, respectively), serum hormones testosterone, Luteinizing hormone, follicle-stimulating hormone and cortisol (S-testosterone, S-LH, S-FSH and S-cortisol, respectively) and various performance parameters: maximal vertical jump height (CMJ) and stride length, heart rate and ratings of perceived exertion during an 8-min run at 15 km x h(-1) (SL(15 km x h(-1)), HR(15 km x h(-1)) and RPE(15 km x h(-1)), respectively). Two hours after the end of both exercise bouts the concentration of each measured serum protein had increased significantly (P < 0.001) compared to the pre-exercise level, but there were no changes in SL(15 km x h(-1)) or CMJ. During the recovery days only S-CK was significantly raised (P < 0.01), concomitant with a decrease in CMJ (P < 0.01) and an increase in RPE(15 km x h(-1)) (P < 0.01). Hormone levels remained unchanged compared to the pre-exercise levels during the recovery days and there were no significant differences between the two exercise bouts in any of the observed post-exercise day-to-day responses. With the exception of S-CK, after IR(120) the post-exercise responses returned to their pre-exercise levels within the 3 days of recovery. The present findings suggest that a single 28-min intermittent middle-distance running exercise does not induce changes in serum hormones of well-trained runners during recovery over 3 days, while changes in S-CK, CMJ and RPE(15 km x h(-1)) indicate that 2-3 days of light training may be needed before the recovery at muscle level is complete.  相似文献   

11.
The goal of this study was to determine whether traditional ergoespirometric incremental exercise testing carried out to the point of exhaustion could be useful in distinguishing the physiological profiles of elite runners that compete in races that lasted about 8 minutes versus those that lasted about 2 hours. Ten male marathon runners (performance time: 2:12:04, coefficient of variation (CV) = 2.33%) and 8 male 3000 m steeplechase runners (performance time: 8:37.83, CV = 2.12%) performed an incremental test on the treadmill (starting speed 10 km·h-1; increments, 2 km·h-1; increment duration, 3 min to exhaustion). Heart rate (HR), VO2, and lactate concentrations were measured at the end of each exercise level. At maximal effort, there were no differences between the groups regarding VO2max and maximal HR; however, the workload time, vVO2max and peak treadmill velocity were significantly higher in the 3000 m steeplechase group (p<0.05). At submaximal effort, there were no significant differences between groups for VO2 (ml·kg-1·min-1), HR, or lactate. Our results show that this type of testing was not sufficient for discriminating the physiological profiles of elite runners who competed in middle-distance versus long-distance events (e.g. in the marathon and the 3000 m steeplechase).  相似文献   

12.
13.
To investigate the effect of endurance training on physiological characteristics during circumpubertal growth, eight young runners (mean starting age 12 years) were studied every 6 months for 8 years. Four other boys served as untrained controls. Oxygen uptake (VO2) and blood lactate concentrations were measured during submaximal and maximal treadmill running. The data were aligned with each individual's age of peak height velocity. The maximal oxygen uptake (VO2max; ml.kg-1.min-1) decreased with growth in the untrained group but remained almost constant in the training group. The oxygen cost of running at 15 km.h-1 (VO2 15, ml.kg-1.min-1) was persistently lower in the trained group but decreased similarly with age in both groups. The development of VO2max and VO2 15 (l.min-1) was related to each individual's increase in body mass so that power functions were obtained. The mean body mass scaling factor was 0.78 (SEM 0.07) and 1.01 (SEM 0.04) for VO2max and 0.75 (SEM 0.09) and 0.75 (SEM 0.02) for VO2 15 in the untrained and trained groups, respectively. Therefore, expressed as ml.kg-0.75.min-1, VO2 15 was unchanged in both groups and VO2max increased only in the trained group. The running velocity corresponding to 4 mmol.l-1 of blood lactate (nu la4) increased only in the trained group. Blood lactate concentration at exhaustion remained constant in both groups over the years studied. In conclusion, recent and the present findings would suggest that changes in the oxygen cost of running and VO2max (ml.kg-1.min-1) during growth may mainly be due to an overestimation of the body mass dependency of VO2 during running.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Dynamic exercise training of the elderly increases maximal O2 uptake (VO2max); however, the effects of training on the ventilation threshold (VET) have not been studied. VET was identified as the final point before the ventilatory equivalent for O2 (VE/VO2) increased, without an increase in the ventilatory equivalent for CO2 (VE/VCO2). Inactive elderly males (mean age, 62 yr) were randomly assigned to a control (C, n = 44) or activity (A, n = 45) group. VO2max and VET were determined from an incremental treadmill test. Initial VO2max was not different between the C (2.34 +/- 0.42 l X min-1) and A (2.28 +/- 0.44 l X min-1) groups, nor was there a significant difference in the VO2 at the VET (C = 1.39 +/- 0.26 l X min-1; A = 1.31 +/- 0.23 l X min-1). The activity group trained for 30 min/day, 3 days/wk at an intensity of approximately 65-80% of VO2max. After 1 yr of training the activity group exhibited an 18% increase in VO2max (A = 2.70 +/- 0.54 l X min-1), but the change in VET was not significant (A = 1.39 +/- 0.28 l X min-1). There was no significant change in VO2max (C = 2.45 +/- 0.68 l X min-1) or VET (C = 1.38 +/- 0.31 l X min-1) in the control group. VET/VO2max declined significantly in the activity group (from 58 to 52% of VO2max). Change in VET/VO2max with training was not correlated with the initial VO2max value. We conclude that increases in aerobic capacity are more readily effected than alterations of the VET in elderly subjects.  相似文献   

15.
Seventeen women (mean age 31 yr) participated in a training program divided into an initial 9-wk period and a subsequent 52-wk period, during which time 6 continued to exercise and the remainder detrained. Improvements in VO2max were significant (+34%) during the initial 9 wk and small (+5%) for the final 52 wk. Four women who stopped training showed a decrease in VO2max (-10%) during the last phase. During the initial 9 wk, central adaptation was important, with SV showing an increase of 28% at 80% VO2max. Peripheral adaptation (a-v O2 difference) was unchanged. Subjects who trained an additional 52 wk showed a slight drop in SV at submaximal work loads from the initial increase following the first 9 wk. When compared with the initial test the change at 9 wk in peripheral adaptation was a small and nonsignificant rise, followed by a significant increase at 61 wk. Women who are very unfit initially (predicted VO2max of 28 ml/kg-min), apparently adapt to the initial training with a central change followed by a much stronger peripheral adaptation during a longer training program.  相似文献   

16.
The present study sought to evaluate the inconsistencies previously observed regarding the predominance of continuous or interval training for improving fitness. The experimental design initially equated and subsequently maintained the same relative exercise intensity by both groups throughout the program. Twelve subjects were equally divided into continuous (CT, exercise at 50% maximal work) or interval (IT, 30 s work, 30 s rest at 100% maximal work) training groups that cycled 30 min day-1, 3 days.week-1, for 8 weeks. Following training, aerobic power (VO2max), exercising work rates, and peak power output were all higher (9-16%) after IT than after CT (5-7%). Vastus lateralis muscle citrate synthase activity increased 25% after CT but not after IT. A consistent increase in adenylate kinase activity (25%) was observed only after IT. During continuous cycling testing the CT group had reduced blood lactate (lab) levels and respiratory quotient at both the same absolute and relative (70% VO2max) work rates after training, while the IT group displayed similar changes only at the same absolute work rates. By contrast, both groups responded similarly during intermittent cycling testing with lower lab concentrations seen only at absolute work rates. These results show that, of the two types of training programs currently employed, IT produces higher increases in VO2max and in maximal exercise capacity. Nevertheless, CT is more effective at increasing muscle oxidative capacity and delaying the accumulation of lab during continuous exercise.  相似文献   

17.
Cardiovascular response to cycle exercise during and after pregnancy   总被引:1,自引:0,他引:1  
Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

19.
This study was designed to examine the interrelationships between performance in endurance running events from 10 to 90 km, training volume 3-5 weeks prior to competition, and the fractional utilization of maximal aerobic capacity (%VO2max) during each of the events. Thirty male subjects underwent horizontal treadmill testing to determine their VO2max, and steady-state VO2 at specific speeds to allow for calculation of %VO2max sustained during competition. Runners were divided into groups of ten according to their weekly training distance (group A trained less than 60 km X week-1, group B 60 to 100 km X week-1, and group C more than 100 km X week-1). Runners training more than 100 km X week-1 had significantly faster running times (average 19.2%) in all events than did those training less than 100 km X week-1. VO2max or %VO2max sustained during competition was not different between groups. The faster running speed of the more trained runners, running at the same %VO2max during competition, was due to their superior running economy (19.9%). Thus all of the group differences in running performance could be explained on the basis of their differences in running economy. These findings suggest either that the main effect of training more than 100 km X week-1 may be to increase running economy, or that runners who train more than 100 km X week-1 may have inherited superior running economy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号