首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the enzyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P(5)-P(1) part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'(1)-P'(2) dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'(1)-S'(2) sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluorescence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-F- E(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P(4) is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P(2) causes an increase of the substrate preference towards this activity.  相似文献   

2.
3.
Porcine spleen cathepsin B is an exopeptidase   总被引:3,自引:0,他引:3  
The major cathepsin B isozyme CB-I purified from porcine spleens was studied for its specificity against various peptide and denatured protein substrates. The enzyme degraded all the peptide substrates by an exopeptidase activity. The substrates were degraded mainly by a dipeptidyl carboxypeptidase activity of the enzyme except for angiotensin I, from which a COOH-terminal leucine residue was released. The enzyme failed to hydrolyze peptides having a proline or cysteic acid in the COOH-terminal, penultimate, and antepenultimate positions. Reduced and carboxymethylated soybean trypsin inhibitor was degraded by the same dipeptidyl carboxypeptidase action of cathepsin B. No significant endopeptidase activity was observed. These results do not support the general assumption that cathepsin B has both endo- and exopeptidase activities, neither do these observations support the postulation that cathepsin B might be involved in the in vivo proteolytic processing of protein precursors. We propose that the biological role of this enzyme is mainly the degradation of tissue proteins in lysosomes.  相似文献   

4.
The carboxypeptidase and endopeptidase activities of cathepsins X and B, as well as their inhibition by E-64 derivatives, have been investigated in detail and compared. The results clearly demonstrate that cathepsins X and B do not share similar activity profiles against substrates and inhibitors. Using quenched fluorogenic substrates, we show that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i. e. approximately 2 orders of magnitude. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can be observed under conditions that preclude efficient monopeptidyl carboxypeptidase activity. In addition, an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X has been synthesized and tested against cathepsins X, B and L. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor. By comparison, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X.  相似文献   

5.
Several new cysteine proteases of the papain family have been discovered in the past few years. To help in the assignment of physiological roles and in the design of specific inhibitors, a clear picture of the specificities of these enzymes is needed. One of these novel enzymes, cathepsin X, displays a unique specificity, cleaving single amino acid residues at the C-terminus of substrates very efficiently. In this study, the carboxypeptidase activities and substrate specificity of cathepsins X and B have been investigated in detail and compared. Using quenched fluorogenic substrates and HPLC measurements, it was shown that cathepsin X preferentially cleaves substrates through a monopeptidyl carboxypeptidase pathway, while cathepsin B displays a preference for the dipeptidyl pathway. The preference for one or the other pathway is about the same for both enzymes, i.e., approximately 2 orders of magnitude, a result supported by molecular modeling of enzyme-substrate complexes. Cleavage of a C-terminal dipeptide of a substrate by cathepsin X can become more important under conditions that preclude efficient monopeptidyl carboxypeptidase activity, e.g., nonoptimal interactions in subsites S(2)-S(1). These results confirm that cathepsin X is designed to function as a monopeptidyl carboxypeptidase. Contrary to a recent report [Klemencic, I., et al. (2000) Eur. J. Biochem. 267, 5404-5412], it is shown that cathepsins X and B do not share similar activity profiles, and that reagents are available to clearly distinguish the two enzymes. In particular, CA074 was found to inactivate cathepsin B at least 34000-fold more efficiently than cathepsin X. The insights obtained from this and previous studies have been used to produce an inhibitor designed to exploit the unique structural features responsible for the carboxypeptidase activity of cathepsin X. Although of moderate potency, this E-64 derivative is the first reported example of a cathepsin X-specific inhibitor.  相似文献   

6.
Variations in activity of the membrane-bound and cytosolic proteinases and peptidases were analyzed in human and rabbit erythrocytes at various stages of their life-span. The patterns observed with human erythrocytes were the following. (a) The acidic endopeptidase activity associated with the membranes undergoes a substantial decline during cellular aging, with an estimated half-life of 65 days. Concomitantly it appears to become progressively more latent. (b) All cytosolic proteinase and peptidase activities described previously (Pontremoli, S., Melloni, E., Salamino, F., Sparatore, B., Michetti, M., Benatti, U., Morelli, A. and De Flora, A. (1980) Eur. J. Biochem. 110, 421–430) decline exponentially throughout the erythrocyte life-span, with the exception of dipeptidyl aminopeptidase III. The calculated half-lives were: 60 days for the neutral endopeptidase; 87 days for the total acidic endopeptidase activity which is accounted for by three distinct enzymes; 49 days for aminopeptidase B and 133 days for a second aminopeptidase with broad substrate specificity; 84 days for dipeptidyl aminopeptidase II. The results obtained with the rabbit erythrocytes were: (a) no significant decline of leucine aminopeptidase, dipeptidyl aminopeptidase II and III activities in the transition from reticulocytes to mature erythrocytes; (b) very limited decline of aminopeptidase B activity; (c) a pronounced age-dependent decay, in increasing order, of neutral endopeptidase, aminopeptidase A, carboxypeptidase and acidic endopeptidase activities.  相似文献   

7.
Cysteine cathepsins mediate proteome homeostasis and have pivotal functions in diseases such as cancer. To better understand substrate recognition by cathepsins B, L, and S, we applied proteomic identification of protease cleavage sites (PICS) for simultaneous profiling of prime and non-prime specificity. PICS profiling of cathepsin B endopeptidase specificity highlights strong selectivity for glycine in P3' due to an occluding loop blocking access to the primed subsites. In P1', cathepsin B has a partial preference for phenylalanine, which is not found for cathepsins L and S. Occurrence of P1' phenylalanine often coincides with aromatic residues in P2. For cathepsin L, PICS identifies 845 cleavage sites, representing the most comprehensive PICS profile to date. Cathepsin L specificity is dominated by the canonical preference for aromatic residues in P2 with limited contribution of prime-site selectivity determinants. Profiling of cathepsins B and L with a shorter incubation time (4 h instead of 16 h) did not reveal time-dependency of individual specificity determinants. Cathepsin S specificity was profiled at pH 6.0 and 7.5. The PICS profiles at both pH values display a high degree of similarity. Cathepsin S specificity is primarily guided by aliphatic residues in P2 with limited importance of prime-site residues.  相似文献   

8.
Lecaille F  Choe Y  Brandt W  Li Z  Craik CS  Brömme D 《Biochemistry》2002,41(26):8447-8454
The primary specificity of papain-like cysteine proteases (family C1, clan CA) is determined by S2-P2 interactions. Despite the high amino acid sequence identities and structural similarities between cathepsins K and L, only cathepsin K is capable of cleaving interstitial collagens in their triple helical domains. To investigate this specificity, we have engineered the S2 pocket of human cathepsin K into a cathepsin L-like subsite. Using combinatorial fluorogenic substrate libraries, the P1-P4 substrate specificity of the cathepsin K variant, Tyr67Leu/Leu205Ala, was determined and compared with those of cathepsins K and L. The introduction of the double mutation into the S2 subsite of cathepsin K rendered the unique S2 binding preference of the protease for proline and leucine residues into a cathepsin L-like preference for bulky aromatic residues. Homology modeling and docking calculations supported the experimental findings. The cathepsin L-like S2 specificity of the mutant protein and the integrity of its catalytic site were confirmed by kinetic analysis of synthetic di- and tripeptide substrates as well as pH stability and pH activity profile studies. The loss of the ability to accept proline in the S2 binding pocket by the mutant protease completely abolished the collagenolytic activity of cathepsin K whereas its overall gelatinolytic activity remained unaffected. These results indicate that Tyr67 and Leu205 play a key role in the binding of proline residues in the S2 pocket of cathepsin K and are required for its unique collagenase activity.  相似文献   

9.
The substrate specificities of papain-like cysteine proteases (clan CA, family C1) papain, bromelain, and human cathepsins L, V, K, S, F, B, and five proteases of parasitic origin were studied using a completely diversified positional scanning synthetic combinatorial library. A bifunctional coumarin fluorophore was used that facilitated synthesis of the library and individual peptide substrates. The library has a total of 160,000 tetrapeptide substrate sequences completely randomizing each of the P1, P2, P3, and P4 positions with 20 amino acids. A microtiter plate assay format permitted a rapid determination of the specificity profile of each enzyme. Individual peptide substrates were then synthesized and tested for a quantitative determination of the specificity of the human cathepsins. Despite the conserved three-dimensional structure and similar substrate specificity of the enzymes studied, distinct amino acid preferences that differentiate each enzyme were identified. The specificities of cathepsins K and S partially match the cleavage site sequences in their physiological substrates. Capitalizing on its unique preference for proline and glycine at the P2 and P3 positions, respectively, selective substrates and a substrate-based inhibitor were developed for cathepsin K. A cluster analysis of the proteases based on the complete specificity profile provided a functional characterization distinct from standard sequence analysis. This approach provides useful information for developing selective chemical probes to study protease-related pathologies and physiologies.  相似文献   

10.
Cathepsin S (CatS) is a lysosomal cysteine protease belonging to the papain superfamily. Because of the relatively broad substrate specificity of this family, a specific substrate for CatS is not yet known. Based on a detailed study of the CatS endopeptidase specificity, using six series of internally quenched fluorescent peptides, we were able to design a specific substrate for CatS. The peptide series was based on the sequence GRWHTVGLRWE-Lys(Dnp)-DArg-NH2, which shows only one single cleavage site between Gly and Leu and where every substrate position between P-3 and P-3' was substituted with up to 15 different amino acids. The endopeptidase specificity of CatS was mainly determined by the P-2, P-1', and the P-3' substrate positions. Based on this result, systematically modified substrates were synthesized. Two of these modified substrates, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2 and Mca-GRWHPMGAPWE-Lys(Dnp)-DArg-NH2, did not react with the purified cysteine proteases cathepsin B (CatB) and cathepsin L (CatL). Using a specific CatS inhibitor, we could further show that these two peptides were not cleaved by endosomal fractions of antigen presenting cells (APCs), when CatS was inhibited and related cysteine proteases cathepsin B, H, L and X were still active. Although aspartic proteases like cathepsin E and cathepsin D were also present, our substrates were suitable to quantify cathepsin S activity specifically in APCs, including B cells, macrophages, and dendritic cells without the use of any protease inhibitor. We find that CatS activity differs significantly not only between the three types of professional APCs but also between endosomal and lysosomal compartments.  相似文献   

11.
The S1 and S2 subsite specificity of recombinant human cathepsins X was studied using fluorescence resonance energy transfer (FRET) peptides with the general sequences Abz-Phe-Xaa-Lys(Dnp)-OH and Abz-Xaa-Arg-Lys(Dnp)-OH, respectively (Abz=ortho-aminobenzoic acid and Dnp=2,4-dinitrophenyl; Xaa=various amino acids). Cathepsin X cleaved all substrates exclusively as a carboxymonopeptidase and exhibited broad specificity. For comparison, these peptides were also assayed with cathepsins B and L. Cathepsin L hydrolyzed the majority of them with similar or higher catalytic efficiency than cathepsin X, acting as an endopeptidase mimicking a carboxymonopeptidase (pseudo-carboxymonopeptidase). In contrast, cathepsin B exhibited poor catalytic efficiency with these substrates, acting as a carboxydipeptidase or an endopeptidase. The S1' subsite of cathepsin X was mapped with the peptide series Abz-Phe-Arg-Xaa-OH and the enzyme preferentially hydrolyzed substrates with hydrophobic residues in the P1' position.  相似文献   

12.
Dipeptidylcarboxypeptidase, endopeptidase, and carboxypeptidase activities of rat liver cathepsin B were investigated using soluble denatured protein substrates, reduced and S-(3-trimethylammonio)propylated proteins and their derivatives. It was found that the soluble denatured proteins were degraded mainly by the dipeptidylcarboxypeptidase activity and in a few cases by the endopeptidase and carboxypeptidase activities. The eipeptidylcarboxypeptidase activity showed broad substrate specificity with broad pH optimum at 4-6. A peptide having the alpha-carboxyl group amidated with methylamine could also be a good substrate for this activity. These results suggest that this activity is dependent not upon the dissociated alpha-carboxyl group at the P2' site but upon the hydrogen-bonding abilities of the alpha-imino moiety and the protonated or amidated alpha-carboxyl moiety at P2'. On the other hand, the endopeptidase and carboxypeptidase activities were observed in a few cases, suggesting that special amino acid sequences in the substrates are responsible for these activities. These activities showed sharp pH optima at 6 and seemed to prefer basic amino acid residues at P1 site. Therefore, we suppose that cathepsin B has a carboxyl group with a pKa of about 5.5 at the S1 subsite which more effectively interacts with a positive charge at the P1 site of the substrate at pH 6 than at pH 5. Based on these results, a model of the binding subsites of this enzyme is proposed.  相似文献   

13.
From the lysosomal cysteine proteinase cathepsin B, isolated from human liver in its two-chain form, monoclinic crystals were obtained which contain two molecules per asymmetric unit. The molecular structure was solved by a combination of Patterson search and heavy atom replacement methods (simultaneously with rat cathepsin B) and refined to a crystallographic R value of 0.164 using X-ray data to 2.15 A resolution. The overall folding pattern of cathepsin B and the arrangement of the active site residues are similar to the related cysteine proteinases papain, actinidin and calotropin DI. 166 alpha-carbon atoms out of 248 defined cathepsin B residues are topologically equivalent (with an r.m.s. deviation of 1.04 A) with alpha-carbon atoms of papain. However, several large insertion loops are accommodated on the molecular surface and modify its properties. The disulphide connectivities recently determined for bovine cathepsin B by chemical means were shown to be correct. Some of the primed subsites are occluded by a novel insertion loop, which seems to favour binding of peptide substrates with two residues carboxy-terminal to the scissile peptide bond; two histidine residues (His110 and His111) in this "occluding loop' provide positively charged anchors for the C-terminal carboxylate group of such polypeptide substrates. These structural features explain the well-known dipeptidyl carboxypeptidase activity of cathepsin B. The other subsites adjacent to the reactive site Cys29 are relatively similar to papain; Glu245 in the S2 subsite favours basic P2-side chains. The above mentioned histidine residues, but also the buried Glu171 might represent the group with a pKa of approximately 5.5 near the active site, which governs endo- and exopeptidase activity. The "occluding loop' does not allow cystatin-like protein inhibitors to bind to cathepsin B as they do to papain, consistent with the reduced affinity of these protein inhibitors for cathepsin B compared with the related plant enzymes.  相似文献   

14.
D K N?gler  R Zhang  W Tam  T Sulea  E O Purisima  R Ménard 《Biochemistry》1999,38(39):12648-12654
Cathepsin X is a novel cysteine protease which was identified recently from the EST (expressed sequence tags) database. In a homology model of the mature cathepsin X, a unique three residue insertion between the Gln22 of the oxyanion hole and the active site Cys31 was found to be located in the primed region of the binding cleft as part of a surface loop corresponding to residues His23 to Tyr27, which we have termed the "mini-loop". From the model, it became apparent that this distinctive structural feature might confer exopeptidase activity to the enzyme. To verify this hypothesis, human procathepsin X was expressed in Pichia pastoris and converted to mature cathepsin X using small amounts of human cathepsin L. Cathepsin X was found to display excellent carboxypeptidase activity against the substrate Abz-FRF(4NO(2)), with a k(cat)/K(M) value of 1.23 x 10(5) M(-)(1) s(-)(1) at the optimal pH of 5.0. However, the activity of cathepsin X against the substrates Cbz-FR-MCA and Abz-AFRSAAQ-EDDnp was found to be extremely low, with k(cat)/K(M) values lower than 70 M(-)(1) s(-)(1). Therefore, cathepsin X displays a stricter exopeptidase activity than cathepsin B. No inhibition of cathepsin X by cystatin C could be detected up to a concentration of 4 microM of inhibitor. From a model of the protease complexed with Cbz-FRF, the bound carboxypeptidase substrate is predicted to establish a number of favorable contacts within the cathepsin X binding site, in particular with residues His23 and Tyr27 from the mini-loop. The presence of the mini-loop restricts the accessibility of cystatin C as well as of the endopeptidase and MCA substrates in the primed subsites of the protease. The marked structural and functional differences of cathepsin X relative to other members of the papain family of cysteine proteases will be of great value in designing specific inhibitors useful as research tools to investigate the physiological and potential pathological roles of this novel enzyme.  相似文献   

15.
Cathepsin X is a papain-like cysteine protease with restricted positional specificity, acting primarily as a carboxy-monopeptidase. We mapped the specificities at the S2, S1, and S1' subsites of human cathepsin X by systematically and independently substituting the P2, P1, and P1' positions of the carboxy-monopeptidase substrate Abz-FRF(4NO(2)) with natural amino acids. Human cathepsin X has broad S2, S1, and S1' specificities within two orders of magnitude in k(cat)/K(M), excluding proline that is not tolerated at these subsites. Glycine is not favored in S2, but is among the preferred residues in S1 and S1', which highlights S2 as the affinity-determinant subsite. The presence of peculiar residues at several binding site positions (Asp76, His234, Asn75, and Glu72) does not translate into a markedly different sequence specificity profile relative to other human cathepsins. These findings suggest that a specific function of human cathepsin X is unlikely to result from sequence specificity, but rather from a combination of its unique positional specificity and the co-localization of enzyme and substrate in a specific cellular environment.  相似文献   

16.
The action of bovine spleen cathepsin B as a dipeptidyl carboxypeptidase on newly synthesized substrates of the type peptidyl-X-p-nitrophenylalanyl (Phe(NO2))-Y (X,Y = amino acid residue) or 5-dimethylaminonaphthalene-1-sulfonyl (Dns)-peptidyl-X-Phe(NO2)-Y was investigated. The kinetic parameters of hydrolysis of the X-Phe(NO2) bond were determined by difference spectrophotometry (delta epsilon 310 = 1600 M-1 cm-1) or by spectrofluorometry by following the five- to eightfold increase of Dns-group fluorescence with excitation at 350 nm and emission at 535 nm. The substrates were moderately sensitive to cathepsin B; kcat varied from 0.7 to 4 s-1 at pH 5 and 25 degrees C; Km varied from 6 to 240 microM. The very acidic optima of pH 4-5 are characteristic for dipeptidyl carboxypeptidase activity of cathepsin B. Bovine spleen cathepsins S and H had little and no activity, respectively, when assayed with Pro-Glu-Ala-Phe(NO2)-Gly. These peptides should be a valuable tool for routine assays and for mechanistic studies on cathepsin B.  相似文献   

17.
Cathepsin B was purified about 11,000-fold from monkey skeletal muscle by ammonium sulfate fractionation and sequential column chromatographies monitored by assaying of Z-Phe-Arg-MCA hydrolase activity. The purified enzyme gave a single protein band on SDS-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 24,000 by gel filtration. It had a pH optimum of 6.5, required a thiol reducing agent for activation, and was inhibited by various thiol protease inhibitors. These properties were similar to those reported for cathepsins B from other sources. Although the enzyme scarcely hydrolyzed ordinary proteins, such as casein, hemoglobin, and bovine serum albumin, it degraded myosin and actin among various myofibrillar proteins. These results strongly suggested that skeletal muscle cathepsin B may participate in the degradation of muscle proteins in vivo. In addition, cathepsin B was shown to hydrolyze various neuropeptides such as Leu-enkephalin, beta-neoendorphin, alpha-neoendorphin, dynorphin(1-13), and substance P. It appeared to act on these peptides mainly as a dipeptidyl carboxypeptidase, although not so rigorously, presumably due to its endopeptidase activity.  相似文献   

18.
The Western corn rootworm is one of the most economically important pests in corn. One possibility for controlling this pest is the cultivation of transgenic corn expressing Bacillus thuringiensis (Bt) toxins, such as Cry3A, Cry34Ab1/Cry35Ab1, and Cry3Bb1. However, widespread cultivation of the resulting Bt corn may result in the development of resistant pest populations. The Bt toxins are processed by proteases in the midgut of susceptible insects. Thus, protease activity studies were conducted using the midgut juice (pH 5.75) from third instars larvae of the susceptible Western corn rootworm. As a result, the activities of the serine endopeptidases trypsin, chymotrypsin, elastase, cathepsin G, plasmin, and thrombin; the cysteine endopeptidases cathepsin L, papain, cathepsin B, and cathepsin H; the aspartic endopeptidase pepsin; the metallo endopeptidase saccharolysin; the exopeptidase aminopeptidase, and the omegapeptidase acylaminoacylpeptidase were detected. These results are of basic interest but also lead to reference systems for the identification of protease-mediated resistance mechanisms in potentially resistant individuals.  相似文献   

19.
The streptococcal pyrogenic exotoxin B (SpeB) is an important factor in mediating Streptococcus pyogenes infections. SpeB is the zymogen of the streptococcal cysteine protease (SCP), of which relatively little is known regarding substrate specificity. To investigate this aspect of SCP function, a series of internally quenched fluorescent substrates was designed based on the cleavage sites identified in the autocatalytic processing of SpeB to mature SCP. The best substrates for SCP contain three amino acids in the nonprimed position (i.e. AIK in P(3)-P(2)-P(1)). Varying the length of the substrate on the primed side of the scissile bond has a relatively lower effect on activity. The highest activity (k(cat)/K(M) = 2.8 +/- 0.6 (10(5) x m(-1)s(-1)) is observed for the pentamer 3-aminobenzoic acid-AIKAG-3-nitrotyrosine, which spans subsites S(3) to S(2)' on the enzyme. High pressure liquid chromatography and mass spectrometry analyses show that the substrates are cleaved at the site predicted from the autoprocessing experiments. These results show that SCP can display an important level of endopeptidase activity. Substitutions at position P(2) of the substrate clearly indicate that the S(2) subsite of SCP can readily accommodate substrates containing a hydrophobic residue at that position and that some topological preference exists for that subsite. Substitutions in positions P(3), P(1), and P(1)' had little or no effect on SCP activity. The substrate specificity outlined in this work further supports the similarity between SCP and the cysteine proteases of the papain family. From the data regarding the identified or proposed natural substrates for SCP, it appears that this substrate specificity profile may also apply to the processing of mammalian and streptococcal protein targets by SCP.  相似文献   

20.
An attempt has been made to extend to the cysteinyl exopeptidases cathepsins H and C affinity-labelling approaches shown to be effective with cysteinyl endopeptidases such as cathepsins B and L and the calcium-activated proteinase. This involved the preparation of amino acid and dipeptide derivatives with unblocked N-termini to satisfy the aminopeptidase and dipeptidyl aminopeptidase characteristics of cathepsins H and C respectively. For covalent reactivity, the possibilities examined included diazomethanes (-CHN2), fluoromethanes (-CH2F) and dimethylsulphonium salt [-CH2S+(CH3)2]. A dipeptidylfluoromethane with a free amino group could not be prepared, perhaps due to inherent instability. Cathepsin H was inactivated by 1 microM-H2N-Phe-CH2F (the 'H2N' indicates a free unblocked amino group) (k2 = 1878 M-1.s-1); this reagent was without effect on cathepsins C and B, even at 100-fold this concentration. Analogous selectivity was shown by H2N-Ser(OBzl)-CHN2 and H2N-Phe-CH2S+(CH3)2, members of other classes of covalently binding reagents. For cathepsin C the dipeptide derivatives H2N-Gly-Phe-CHN2 and H2N-Phe-Ala-CH2S+(CH3)2 caused rapid inactivation near 10(-7) M. Higher concentrations inactivated cathepsins H and B, but the rates were slower by two to three orders of magnitude than for cathepsin C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号