首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
2.
Genetic inactivation of PTEN through either gene deletion or mutation is common in metastatic prostate cancer, leading to activation of the phosphoinositide 3-kinase (PI3K-AKT) pathway, which is associated with poor clinical outcomes. The PI3K-AKT pathway plays a central role in various cellular processes supporting cell growth and survival of tumor cells. To date, therapeutic approaches to develop inhibitors targeting the PI3K-AKT pathway have failed in both pre-clinical and clinical trials. We showed that a novel AKT inhibitor, AZD5363, inhibits the AKT downstream pathway by reducing p-MTOR and p-RPS6KB/p70S6K. We specifically reported that AZD5363 monotherapy induces G2 growth arrest and autophagy, but fails to induce significant apoptosis in PC-3 and DU145 prostate cancer cell lines. Blocking autophagy using pharmacological inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or genetic inhibitors (siRNA targeting ATG3 and ATG7) enhances cell death induced by AZD5363 in these prostate cancer cells. Importantly, the combination of AZD5363 with chloroquine significantly reduces tumor volume compared with the control group, and compared with either drug alone in prostate tumor xenograft models. Taken together, these data demonstrate that AKT inhibitor AZD5363, synergizes with the lysosomotropic inhibitor of autophagy, chloroquine, to induce apoptosis and delay tumor progression in prostate cancer models that are resistant to monotherapy, with AZD5363 providing a new therapeutic approach potentially translatable to patients.  相似文献   

3.
Baicalein is a new drug that has shown promising anti-cancer effects against a broad spectrum of tumors. However, the potential effect on osteosarcoma cells and the mechanisms involved are still largely unknown. Resistance to chemotherapy remains a major obstacle in cancer therapy. Therefore, the aim of the present study was to investigate the anti-tumor effect of baicalein on human osteosarcoma cancer cells and the molecular mechanism involved, as well as identify possible mechanisms of drug resistance. Our results revealed that baicalein-induced apoptosis in osteosarcoma cells was via a mitochondrial pathway involving both caspase-dependent and independent mechanisms. Notably, baicalein treatment upregulated the expression of HSP70, which partially prevented human osteosarcoma cells from undergoing apoptosis. Moreover, it was revealed that HSP70 expression decreased the sensitivity of osteosarcoma cells to baicalein via activation of PI3K/AKT and MAPK/ERK pathways. These results suggest that targeting HSP70-mediated drug resistance, in combination with chemotherapy drugs, may provide novel therapeutic opportunities.  相似文献   

4.
Oxaliplatin is a key drug in chemotherapy of colorectal cancer (CRC). However, its efficacy is unsatisfied due to drug resistance of cancer cells. In this study, we tested whether a natural agent, ursolic acid, was able to enhance the efficacy of oxaliplatin for CRC. Four CRC cell lines including SW480, SW620, LoVo, and RKO were used as in vitro models, and a SW620 xenograft mouse model was used in further in vivo study. We found that ursolic acid inhibited proliferation and induced apoptosis of all four cells and enhanced the cytotoxicity of oxaliplatin. This effect was associated with down-regulation of Bcl-xL, Bcl-2, survivin, activation of caspase-3, 8, 9, and inhibition of KRAS expression and BRAF, MEK1/2, ERK1/2, p-38, JNK, AKT, IKKα, IκBα, and p65 phosphorylation of the MAPK, PI3K/AKT, and NF-κB signaling pathways. The two agents also showed synergistic effects against tumor growth in vivo. In addition, ursolic acid restored liver function and body weight of the mice treated with oxaliplatin. Thus, we concluded that ursolic acid could enhance the therapeutic effects of oxaliplatin against CRC both in vitro and in vivo, which offers an effective strategy to minimize the burden of oxaliplatin-induced adverse events and provides the groundwork for a new clinical strategy to treat CRC.  相似文献   

5.
While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma.  相似文献   

6.
目的: 探讨紫草素对肝癌SMMC-772细胞的作用及分子机制。方法: SMMC-7721细胞分别经0、5、20、80、320 ng/ml的紫草素作用0 h、24 h、48 h和72 h后,适时采用CCK8法观察该细胞增殖的活性,hoechst染色分析细胞的核型变化,流式细胞仪检测细胞凋亡水平,Western blot证实细胞内蛋白表达水平的改变,通过小鼠体内实验观察该药的抑瘤作用。结果: 本研究体外实验发现紫草素可显著抑制SMMC-7721细胞的增殖活性并诱导其凋亡(P<0.01),上调基因p53的表达,并抑制AKT、PI3K蛋白的磷酸化,体内实验也证实紫草素可显著抑制荷瘤小鼠肿瘤的生长(P<0.01),作用效果随用药剂量和时间的增加而增加。结论: 紫草素可通过影响PI3K/AKT信号通路抑制SMMC-7721细胞的增殖,且诱导其凋亡,具有潜在的抗肝癌作用。  相似文献   

7.
The prognosis of pancreatic cancer (PC) remains pessimistic because of the difficulty in early diagnosis as well as the little advance in chemotherapy. Although being the first-line chemotherapy drug for PC at present, gemcitabine still has some disadvantages, such as low drug sensitivity and significant side effects. Thus, how to further improve the sensitivity of PC cells to gemcitabine is still a difficult subject in the field of pancreatic cancer-treatment. Polo-like kinase 1 (Plk1) is closely related to poor outcome in many malignant tumors and its high expression is linked to chemoresistance in PC. As a downstream gene activated by PI3K/Akt signal pathway, we assumed that the targeted depletion of Plk1 could contribute to the chemosensitization induced by synergistic drug interaction of PI3K inhibitor LY294002 together with gemcitabine. To analyze effect of Plk1 in chemotherapy, we constructed two recombinant adenoviral vectors which carry enhanced green fluorescent protein (rAd-EGFP) and Plk1-shRNA (rAd-shPlk1), respectively. Both inhibition of PI3K/Akt signal pathway through PI3K inhibitor LY294002 and targeted depletion of Plk1 via recombinant adenoviral shRNA can cause chemosensitization, and the targeted depletion of Plk1 can enhance the chemosensitization of LY294002. Thus, the gene therapy like targeted depletion of Plk1 may create new perspectives for chemosensitization of PC.  相似文献   

8.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

9.
Prostate cancer is a major health concern in males worldwide, owing to its high incidence. Sparstolonin B (SsnB), a component of the Chinese herbal medicine Sparganium stoloniferum, is used to treat many diseases. However, the effects and mechanisms of action of SsnB in prostate cancer have not yet been reported. In this study, we evaluated the effects of SsnB on cellular processes and tumour growth. In particular, we verified that SsnB could inhibit the proliferation, migration and invasion of prostate cancer cells and induce apoptosis by activating G2/M phase arrest in vitro based on a series of cytological experiments. In vivo, we found that SsnB could inhibit tumour growth in nude mouse xenograft models. We further confirmed that SsnB could repress the PI3K/AKT pathway by increasing reactive oxygen species (ROS) accumulation and oxidative stress. Collectively, SsnB inhibits tumour growth and induces apoptosis in prostate cancer via the suppression of the ROS-mediated PI3K/AKT pathway and may be a new alternative to adjuvant therapy for prostate cancer.  相似文献   

10.
11.
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is frequently upregulated in human cancer. Activation of this pathway has been reported to be associated with resistance to various chemotherapeutical agents. We here used a chemical biology/chemical informatic approach to identify apoptotic mechanisms that are insensitive to activation of the PI3K/AKT pathway. The National Cancer Institute (NCI) Mechanistic Set drug library was screened for agents that induce apoptosis in colon carcinoma cells expressing a constitutively active form of AKT1. The cytotoxicity screening data available as self-organized maps at the Developmental Therapeutics Program (DTP) of the NCI was then used to classify the identified compounds according to mechanism of action. The results showed that drugs that interfere with the mitotic process induce apoptosis which is comparatively insensitive to constitutive AKT1 activity. The conditional screening approach described here is expected to be useful for identifying relationships between the state of activation of signaling pathways and sensitivity to anticancer agents.  相似文献   

12.
TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many types of cancer cells. TRAIL is considered a therapeutic target, therefore, it was of interest to examine molecular mechanisms that may modulate sensitivity to TRAIL signaling in prostate cancer cells. LNCaP cells were found to be relatively resistant to TRAIL induced cell death while PC3 cells were sensitive. PI3-kinase (PI3 K) inhibitors were able to render LNCaP cells sensitive to TRAIL but conferred resistance to PC3 cells. PI3 K inhibitors were associated with an increase in p21waf1, cip1 expression in PC3 cells where as p21 decreases in LNCaP cells suggesting that p21 may impart TRAIL resistance. Since androgen receptor (AR) signaling can be modulated by AKT, and p21 is an AR responsive gene, the impact of PI3 K inhibition on TRAIL sensitivity was evaluated in AR transfected PC3 cells (PC3AR). The expression of AR was significantly downregulated by PI3 K inhibition in LNCaP cells, which have an intact AR signaling axis. PC3AR cells expressed higher levels of p21 protein and were relatively resistant to TRAIL compared to control cells. Finally, using adenoviral p21 gene transfer we directly demonstrated that p21 can confer resistance to TRAIL-induced cell death. These results suggest that TRAIL resistance is not regulated simply by a PI3 K/AKT survival pathway associated with inactivating PTEN mutations but may also be modulated by downstream AR responsive targets such as p21. These findings may have significant clinical implications for the utility of TRAIL in the management of prostate cancer.  相似文献   

13.
5-Fluorouracil (5-FU) is an important chemotherapeutic agent for nasopharyngeal carcinoma (NPC). However, drug resistance may occur after several cycles of 5-FU-based chemotherapy. The oncogene B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI-1) has been shown to be involved in the protection of cancer cells from apoptosis. In this study, 5-FU treatment could increase the percentage of apoptotic NPC cells among BMI-1/RNAi-transfected cells than that among cells transfected with the empty vector. The 50% inhibitory concentration (IC50) values of 5-FU were significantly decreased to a greater extent in the cells transfected with BMI-1/RNAi. Most importantly, the expression of phospho-AKT and the anti-apoptotic protein BCL-2 were downregulated in the cells in which BMI-1 expression was inhibited, whereas the apoptosis-inducer BAX was observed to be upregulated. Abrogation of AKT pathway by a PI3K inhibitor could not further increase the sensitivity to 5-FU in the cells with reduced BMI-1 expression. Taken together, BMI-1 depletion enhanced the chemosensitivity of NPC cells by inducing apoptosis; which is associated with inhibition of the PI3K/AKT pathway.  相似文献   

14.
Phosphatidylinositide 3-kinase/AKT in radiation responses   总被引:2,自引:0,他引:2  
  相似文献   

15.
Oxymatrine (OMT), one of the main active components of extracts from the dry roots of Sophora flavescens, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects. The aim of the present study is to explore the efficiency of combination therapy with OMT and oxaliplatin (OXA) and identify the in vitro and in vivo cytotoxicity on colon cancer lines (HT29 and SW480) and mice model. Cells were treated with OMT and/or OXA and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that OMT and OXA inhibited the proliferation of colon cancer cells, and combination therapy of OMT and OXA resulted in a combination index?<?1, indicating a synergistic effect. Co-treatment with OMT and OXA caused G0/G1 phase arrest by upregulating P21, P27 and downregulating cyclin D, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, p-mTOR, p-p70S6K. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of OXA?+?OMT, demonstrating the important role of PI3K/AKT in this process. Moreover, in nude mice model, co-treatment displayed more efficient inhibition of tumor weight and volume on SW480 xenograft mouse model than single-agent treatment with OXA or OMT. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which consistent with our in vitro results. In conclusion, our findings highlight that the combination therapy with OMT and OXA exerted synergistic antitumor effects in colon cancer cells through PI3K/AKT/mTOR pathway and combination treatment with OMT and OXA would be a promising therapeutic strategy for colon carcinoma treatment.  相似文献   

16.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell‐cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst‐positive cell number, and altered the apoptotic‐related proteins (caspase‐3/9, Bax, and Bcl‐2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca‐8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p‐AKT Ser473) in Tca‐8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5‐silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.  相似文献   

17.
There is significant need to identify novel prostate cancer drug targets because current hormone therapies eventually fail, leading to a drug-resistant and fatal disease termed castration-resistant prostate cancer. To functionally identify genes that, when silenced, decrease prostate cancer cell proliferation or induce cell death in combination with antiandrogens, we employed an RNA interference-based short hairpin RNA barcode screen in LNCaP human prostate cancer cells. We identified and validated four candidate genes (AKT1, PSMC1, STRADA, and TTK) that impaired growth when silenced in androgen receptor positive prostate cancer cells and enhanced the antiproliferative effects of antiandrogens. Inhibition of AKT with a pharmacologic inhibitor also induced apoptosis when combined with antiandrogens, consistent with recent evidence for PI3K and AR pathway crosstalk in prostate cancer cells. Recovery of hairpins targeting a known prostate cancer pathway validates the utility of shRNA library screening in prostate cancer as a broad strategy to identify new candidate drug targets.  相似文献   

18.
The drug resistance of tumor cells greatly reduces the efficacy of chemotherapy drugs in gastric cancer. Salvianolic acid B (Sal-B) is considered as a chemopreventive agent which suppresses oxidative stress and apoptosis. Therefore, the study aims to clarify the mechanism of Sal-B in drug-resistant gastric cancer cells. CCK8 assay analyzed cell viabilities after GES1, AGS and AGS/DDP cells were respectively treated by Sal-B of different concentration or after AGS/DDP cells were disposed by cisplatin (DDP) in different concentration. The colony formation, ROS generation, apoptosis, migration, invasion and EMT marker proteins were respectively analyzed through formation assay, ROS kits, TUNNEL staining, Wound healing, Transwell assays and Western blot. The results demonstrated that Sal-B acted alone or in synergy with DDP to reduce cell viabilities, initiate ROS generation, promote cell apoptosis, as well as decrease migration, invasion and EMT in AGS and AGS/DDP cells. AKT activator and mTOR activator significantly reversed the above effects of Sal-B. Collectively, Sal-B regulated proliferation, EMT and apoptosis to reduce the resistance to DDP via AKT/mTOR pathway in DDP-resistant gastric cancer cells. Sal-B could be a potential anti-drug resistance agent to chemotherapy in gastric cancer.  相似文献   

19.
Increasing autophagy is beneficial for curing hepatocellular carcinoma (HCC). Damage-regulated autophagy modulator (DRAM) was recently reported to induce apoptosis by mediating autophagy. However, the effects of DRAM-mediated autophagy on apoptosis in HCC cells remain unclear. In this study, normal hepatocytes (7702) and HCC cell lines (HepG2, Hep3B and Huh7) were starved for 48 h. Starvation induced apoptosis and autophagy in all cell lines. We determined that starvation also induced DRAM expression and DRAM-mediated autophagy in both normal hepatocytes and HCC cells. However, DRAM-mediated autophagy was involved in apoptosis in normal hepatocytes but not in HCC cells, suggesting that DRAM-mediated autophagy fails to induce apoptosis in hepatoma in response to starvation. Immunoblot and immunofluorescence assays demonstrated that DRAM translocated to mitochondria and induced mitophagy, which led to apoptosis in 7702 cells. In HCC cells, starvation also activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which blocks the translocation of DRAM to mitochondria through the binding of p-AKT to DRAM in the cytoplasm. Inactivation of the PI3K/AKT pathway rescued DRAM translocation to mitochondria; subsequently, mitochondrial DRAM induced apoptosis in HCC cells by mediating mitophagy. Our findings open new avenues for the investigation of the mechanisms of DRAM-mediated autophagy and suggest that promoting DRAM-mediated autophagy together with PI3K/AKT inhibition might be more effective for autophagy-based therapy in hepatoma.  相似文献   

20.
Background: The research of G protein-coupled receptors (GPCRs) is a promising strategy for drug discovery. In cancer therapy, there is a need to discover novel agents that can inhibit proliferation and induce apoptosis in cancer cells. JTC-801 is a novel GPCR antagonist with the function of reversing pain and anxiety symptoms. This study aims to investigate the antitumor effects of JTC-801 on human osteosarcoma cells (U2OS) and elucidate the underlying mechanism.

Materials and methods: The Cell Counting Kit-8 assay was used to detect the viability of U2OS cells treated with JTC-801 in vitro. The cell apoptosis was evaluated using a flow cytometry assay with Annexin V-FITC/PI double staining. The inhibitory effect of JTC-801 on invasion and migration of U2OS cells were determined by the Transwell assays. Western blot assay was performed to measure the levels of proteins related to cell apoptosis and its mechanism.

Results: The JTC-801 significantly decreased the viability of U2OS cells (p?p?p?Conclusions: JTC-801 may exert osteosarcoma cell growth inhibition by promoting cell apoptosis, through PI3K/AKT signaling pathway participation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号