首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In laboratory feeding trials, we analyzed the feeding behavior and selectivity of the cichlid, Sarotherodon galilaeum, for zooplankton prey from Lake Kinneret, Israel. The feeding behavior was dependent on fish size. Fish less than 20 mm SL fed on zooplankton as obligate particulate feeders. Fish from 20 to 42 mm SL fed either as particulate feeders or as filter feeders. Fish larger than 62 mm SL fed as obligate filter feeders. Particulate-feeding fish were size selective and had highest feeding electivities for large-sized zooplankton species. Filter-feeding fish had highest feeding electivities for zooplankton species with poor escape ability. In general, S. galilaeum predation pressure would be greatest on Ceriodaphnia reticulata, a large-bodied and easily captured species which is selected by both particulate-feeding and filter-feeding fish.  相似文献   

2.
Synopsis We examined the feeding behaviors and selectives of two common planktivorous fishes, pumpkinseeds Lepomis gibbosa and fathead minnows Pimephales promelas in the laboratory. Ingestion rates for both pumpkinseeds and fathead minnows feeding on zooplankton increased as a function of fish length. Pumpkinseeds fed on zooplankton strictly as particulate feeders, with preferences increasing as a function of zooplankton body size regardless of taxonomic identity. Preferences were highest for large Daphnia, intermediate for intermediate-sized copepods, and lowest for small Ceriodaphnia. Fathead minnows displayed the ability to use both particulate-feeding and filter-feeding behaviors. Differential preferences tended to reflect both zooplankton size and taxon, being highest for large, slow-swimming Daphnia, intermediate for small Ceriodaphnia, and lowest for faster-swimming copepods. These differences in prey capture behaviors and preferences of the two fishes are reflected in the zooplankton taxonomic composition of small ponds containing each fish type. The crustacean zooplankton assemblages in ponds containing both pumpkinseeds and fathead minnows were dominated by copepods. Cladocerans were rare. In ponds containing pumpkinseeds, but no fathead minnows, cladocerans were abundant, generally accounting for up to 80% of total crustacean zooplankton biomass. These results suggest that the type of planktivore, and not simply the presence or abundance of planktivores in a system, can determine zooplankton community structure.  相似文献   

3.
Synopsis A model has been developed to describe the process of switching between particulate- and filter-feeding in common bream, Abramis brama, in relation to fish size and zooplankton density. The model assumes that the encounter rate of fish and zooplankton is determined by the density of zooplankton and the swimming speed of fish. However, if zooplankton density is so high as to allow at least one prey to be engulfed per random snap, the encounter rate is determined by the volume of the buccal cavity and by zooplankton density, but is independent of swimming speed. The snapping frequency will be maximal at the time of switching, decreasing with increasing zooplankton density because of the extra time needed for intra-oral prey handling. The model predicted switching from particulate- to filter-feeding only for bream> 15 cm standard length at zooplankton densities < 500 l-1. The snap frequency of six size classes of bream (7.5, 10.4, 12.5, 15, 24 and 29.5 cm) was measured at varying densities of Daphnia. The model predictions for snap frequencies of all size classes corresponded to the highest values observed. The average of the observed snap frequencies was only 50% of the predicted values, probably because the calculated average distance between prey animals assumed an ideal swimming route of the fish and error-free vision for particulate-feeding, and the handling time was ignored.  相似文献   

4.
Synopsis Acará, Geophagus brasiliensis, and red-breasted bream, Tilapia rendalli, are important planktivorous cichlids in southern Brazilian lakes and reservoirs. In laboratory experiments, I quantified behavior and selectivity of different sizes of these two fish feeding on lake zooplankton. Feeding behavior depended on fish size. Fish < 30 mm were visual feeders. Fish 30–50 mm either visually fed or pump-filter fed depending on zooplankton size. Fish > 70 mm were pump-filter feeders. Replicate 1 h feeding trials revealed that, as the relative proportions of prey changed during an experiment, acará (30–42 mm, standard length) and tilapia (29–42 mm) shifted from visual feeding on large evasive copepods to filter feeding on small cladocerans and rotifers. Electivity and feeding rate increased with prey length, but were distinct for similar-sized cladocerans and copepods. Visual/filter-feeding fish had lowest electivities for small and poorly evasive rotifers and cyclopoid nauplii. They fed non-selectively on cyclopoid copepodites, had intermediate electivities for calanoid nauplii and small cladocerans, and had highest electivities for large cladocerans, cyclopoid adults, and calanoid copepodites and adults. Although belonging to different cichlid genera and native to South America and Africa, respectively, acará and red-breasted bream (= congo tilapia) exhibited similar selectivity for zooplankton. Apparently, few stereotyped feeding behaviors have evolved during the acquisition of microphagy in fish. Shift in feeding modes allows these two species to optimally exploit the variable and dynamic patchy distribution of planktonic resources.  相似文献   

5.
Based on protochordates and extant fish, the earliest Palaeozoic vertebrates were microphagous suspension-feeding animals that pumped food-carrying water very slowly and thus required highly concentrated suspensions. Such conditions exist in benthic (not open water) aquatic environments. Feeding modes which on the basis of extant fish are closely related to benthic microphagous suspension feeding include deposit feeding, epilithic algal scraping, and macrophagous suspension feeding; early jawless vertebrates are predicted to have included all these feeding types. The gnathostome condition is predicted to have followed an initial switch from feeding on suspensions to taking tiny individual food particles (microphagous suspension-feeding → microphagous particulate-feeding → macrophagous particulate-feeding).  相似文献   

6.
Quantitative and qualitative changes in the feeding spectra and growth patterns are studied in the larvae and juveniles of perch in artificial water ecosystems (mesocosms) in the presence of a filter-feeding zebra mussel. At a stocking density of 0.75 kg/m2, the presence of a zebra mussel leads to a change in the feeding conditions of zooplankton, to a decrease in its abundance in regards to critical values for fish feeding, to an increase in the abundance of organisms of macrobenthos in the food, and to the rapid transition of the fish to feeding on chironomids. As a result of these changes, the growth rate of perch larvae decreases, their development at step D 1 is delayed, the differentiation of the juveniles by size is accelerated, their size and weight variability increases, and individual predators (cannibals) appear.  相似文献   

7.
Synopsis Studies of feeding in bony fishes have almost universally demonstrated the ability of individuals to modulate their method of capture in response to differing stimuli. Preliminary evidence indicates that morphologically specialized inertial suction feeding sharks are the most likely fishes to lack inherent modulatory ability. We examined the ability of the nurse shark, Ginglymostoma cirratum, to modulate its feeding behavior based on different food types and sizes. G. cirratum is an inertial suction feeding fish that is apparently stereotyped in its food capture behavior. Electromyography showed no statistical difference between feeding motor patterns based on food type (squid or fish) or size (gape width or twice gape width), although there were slight inter-individual differences in the onset of muscle firing for some muscles. Kinematic analysis showed a statistical difference in variables associated with durations for different food types, with the durations for all variables being faster for squid bites than fish bites, but no difference based on the size of the food item. This apparent lack of modulation may be associated with specialization of the morphology and behavior of G. cirratum for obligate suction prey capture. This functional specialization constrains the method in which G. cirratum captures prey but does not appear to result in dietary specialization. An unusual post capture spit-suck manipulation allows this shark to handle and ingest large prey.  相似文献   

8.
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral‐feeding fishes are known to be highly selective feeders on particular coral genera or species and even different parts of individual coral colonies. The absence of strong correlations between the nutritional value of corals and prey preferences suggests other factors such as polyp accessibility may be important. Here, we investigated within‐colony feeding selectivity by the corallivorous filefish, Oxymonacanthus longirostris, and if prey accessibility determines foraging patterns. After confirming that this fish primarily feeds on coral polyps, we examined whether fish show a preference for different parts of a common branching coral, Acropora nobilis, both in the field and in the laboratory experiments with simulated corals. We then experimentally tested whether nonuniform patterns of feeding on preferred coral species reflect structural differences between polyps. We found that O. longirostris exhibits nonuniform patterns of foraging in the field, selectively feeding midway along branches. On simulated corals, fish replicated this pattern when food accessibility was equal along the branch. However, when food access varied, fish consistently modified their foraging behavior, preferring to feed where food was most accessible. When foraging patterns were compared with coral morphology, fish preferred larger polyps and less skeletal protection. Our results highlight that patterns of interspecific and intraspecific selectivity can reflect coral morphology, with fish preferring corals or parts of coral colonies with structural characteristics that increase prey accessibility.  相似文献   

9.
The objective of this study is to document under both field and laboratory conditions the phenomenon of size-biased feeding by the Gila topminnow, Poeciliopsis occidentalis, and to shed light on the mechanisms responsible for this process. Adult female Gila topminnows feed in Monkey Spring, Santa Cruz County, Arizona, on a variety of food items, but Hyalella azteca is an important element of its invertebrate diet. The size of the amphipods ingested by female topminnows is a function of the size of the fish, with larger fish taking larger prey. There is also a strong preference for topminnows to select large amphipods from within the size limits imposed by the width of the mouth.The correlation between fish size and prey size was also seen in the laboratory, utilizing Daphnia similis and food pellets as prey. The tendency to select large prey from a range of available sizes was prominent with both Daphnia and pellets. The feeding period in the laboratory is characterized by two distinct phases. During the first phase, feeding is rapid and nonselective. As the feeding progresses, the rate of feeding drops dramatically and selectivity increases.More complex laboratory feeding experiments gave equivocal results. When fish were presented pellets of two sizes at different densities and at different ratios of small to large, size biased feeding was not clearly evident. Both predator and prey densities, agonistic behavior, and reaction distance should be explored more thoroughly as next steps in attempts to mimic feeding behavior in nature.Extracted from a Ph. D. thesis written by the junior author  相似文献   

10.
A 30‐day growth trial was conducted to investigate the individual variations in feeding rate, growth rate, spontaneous activity, and their possible interrelationships in hybrid tilapia (Oreochromis niloticus × O. aureus) reared individually at feeding frequencies of one and two meals daily. Results show that the feeding rate in energy (FRe), specific growth rate in energy (SGRe), and food conversion efficiency (FCE) of fish fed twice a day were significantly higher than that of fish fed only once. However, no significant differences in distance or in time spent swimming were observed between the groups. SGRe was positively correlated with FRe in fish fed only once daily, and SGRe was positively correlated with food conversion efficiency in energy (FCEe) between the two groups. SGRe was only inversely correlated with the distance that fish swam when fed once daily. The results suggest that the individual growth differences of hybrid tilapia could be attributed mainly to variations in FRe, and that the energy costs of spontaneous activity play an important role in the differences at feeding frequency of one meal a day. However, at feeding frequencies of two meals a day, individual growth differences in fish may be caused by variations in FCEe, and energy costs of spontaneous activity have only marginal effects on the differences.  相似文献   

11.
Laboratory growth and food consumption data for two size classes of age 2 year yellow perch Perca flavescens , each fed on two distinct feeding schedules at 21° C, were used to evaluate the abilities of the Wisconsin (WI) and Karas–Thoresson (KT) bioenergetics models to predict fish growth and cumulative consumption. Neither model exhibited consistently better performance for predicting fish body masses across all four fish size and feeding regime combinations. Results indicated deficiencies in estimates of resting routine metabolism by both models. Both the WI and KT models exhibited errors for predicting growth rates, which were strongly correlated with food consumption rate. Consumption-dependent prediction errors may be common in bioenergetics models and are probably the result of deficiencies in parameter values or assumptions within the models for calculating energy costs of specific dynamic action, feeding activity metabolism or egestion and excretion. Inter-model differences in growth and consumption predictions were primarily the result of differences in egestion and excretion costs calculated by the two models. The results highlighted the potential importance of parameters describing egestion and excretion costs to the accuracy of bioenergetics model predictions, even though bioenergetics models are generally regarded as being insensitive to these parameters. The findings strongly emphasize the utility and necessity of performing laboratory evaluations of all bioenergetics models for assurance of model accuracy and for facilitation of model refinement.  相似文献   

12.
Arctic char ( Salvelinus alpinus ) living in allopatry in lakes often show a distinct size dimorphism where the large char prey upon small char. We studied the relationship between size scaling of energy intake, total metabolic costs and levels of storage energy related to the niche shift from invertebrate feeding to cannibalism in an alpine Arctic char population. Gill-net samples consisted of two distinct size modes, small invertebrate feeding char (92–172 mm total length) and large cannibalistic char (265–606 mm total length). Food consumption was estimated for a one year period using a radioactive tracer (137Cs). The energy intake followed a hump-shaped relationship with fish size for invertebrate feeding char and increased monotonically with size for cannibalistic char. Total metabolic costs increased exponentially with size for both groups. Char feeding in the invertebrate niche had a maximum net energy gain at 140 mm total length with an upper size limit for positive net energy gain at 180 mm. For cannibals the relationship between size and net energy gain formed a hump shaped function with maximum net energy gain at 400 mm and a lower size limit for positive net energy gain at 230 mm. The size at maturation for both small and large char was close to the size for maximum energy gain in their respective niches. Immature individuals close to the upper size limit for positive net energy gain in the invertebrate niche had low levels of storage lipids but tended to have high mass specific growth rates. This may imply a reallocation from reversible (stored) energy to structural (length) growth as a strategy to transform into the size-range where the cannibalistic niche successfully could be exploited.  相似文献   

13.
Synopsis We examined how spatial distribution and the use of aggressive behavior by blue gouramis, Trichogaster trichopterus (Belontiidae), in the presence of a concentrated food source were affected by group size and by the short-term presence and absence of food. Gouramis aggregated in the area of the food source, and the frequency of aggressive acts per fish was higher for fish near the food source than for fish away from it. The frequency of aggressive acts per fish near the food source decreased with group size and was about 50 times higher in groups of 2 and 4 than it was in groups of 16 and 32. In group sizes 2 and 4, the frequency of aggression was unaffected by the presence and absence of food, but in larger group sizes aggression increased during short intervals without food. The mean proportion of time spent near the food source increased from group size 2 to group size 8 and decreased from group size 8 to group size 32 and was greater during intervals of food availability than during intervals in which food was not available. We suggest that gouramis adjust their relative use of contest and scramble competition according to the costs and benefits of aggression as determined by the number of competitors and by the potential for missed feeding opportunities. The average proportion of time spent in the vicinity of the food source appears to be influenced by both the rate of aggression and by the net rate of gain available.  相似文献   

14.
A quantitative comparison of the grazing behaviour of young Oreochromis niloticus feeding on the planktonic cyanobacterium Microcystis aeruginosa and a periphytic community dominated by the cyanobacterium Oscillatoria sp., determined that biomass ingestion rates of fish filter-feeding on planktonic cyanobacteria were significantly lower than those surface-grazing on periphyton. Comparisons of published laboratory data on filter-feeding with field data on algal ingestion rates suggest that filter-feeding may be a relatively unimportant method of ingesting algae.  相似文献   

15.
The technique of X-ray cinematography was used to study pharyngeal movements in Abramis brama (L.). The theoretical and practical problems in X-ray cinematography of feeding fish are discussed, as well as criteria for the selection of images suited for detailed measurements.
Respiration and filter-feeding on Daphnia pulex (length c . 1 mm) show different gill arch movement patterns in bream. Slits between gill-arches are kept smaller during filter-feeding. In addition, during filter-feeding, this inter-arch distance decreases considerably in a posterior direction. The hypothesis that particle retention occurs on the slits formed between adjacent gillarches and their gill-rakers is not supported by the present results.  相似文献   

16.
Classical models of phytoplankton–zooplankton interaction show that with nutrient enrichment such systems may abruptly shift from limit cycles to stable phytoplankton domination due to zooplankton predation by planktivorous fish. Such models assume that planktivorous fish eat only zooplankton, but there are various species of filter-feeding fish that may also feed on phytoplankton. Here, we extend these classical models to systematically explore the effects of omnivory by planktivorous fish. Our analysis indicates that if fish forage on phytoplankton in addition to zooplankton, the alternative attractors predicted by the classical models disappear for all realistic parameter settings, even if omnivorous fish have a strong preference for zooplankton. Our model also shows that the level of fish biomass above which zooplankton collapse should be higher when fish are omnivorous than when fish are zooplanktivorous. We also used the model to explore the potential effects of the now increasingly common practice of stocking lakes with filter-feeding fish to control cyanobacteria. Because omnivorous filter-feeding fish forage on phytoplankton as well as on the main grazers of phytoplankton, the net effect of such fish on the phytoplankton biomass is not obvious. Our model suggests that there may be a unimodal relationship between the biomass of omnivorous filter-feeding fish and the biomass of phytoplankton. This implies that to manage for reductions in phytoplankton biomass, heavy stocking or strong reduction of such fish is best.  相似文献   

17.
文章利用碳、氮稳定同位素技术对江湖阻隔典型湖泊-保安湖的食物网结构进行了研究。结果表明保安湖中鱼类消费者的主要营养级范围为2.1—3.3, 在调查到的16种鱼类中, 顶级肉食性鱼类种类很少, 杂食性鱼类的种类最多。保安湖食物网主要由两条营养传递途径构成, 即由POM、浮游植物为主要食物源的浮游牧食链与沉积物为主要食物源的底栖食物链。POM、浮游植物、浮游动物和底栖动物是保安湖水域食物网中鱼类的主要食物来源, 其次是沉积物中的碎屑和水生植物等。此外, 从基于理论食性数据的食物网与BIMM模型预测的食物网结构可以看出, 从POM、浮游植物、浮游动物到杂食性鱼类的浮游牧食链在整个食物网中具有主导性, 而从水生植物、沉积物和底栖动物到杂食性鱼类的底栖食物链相对重要性较低。  相似文献   

18.
Summary Head size and shape of reptiles may reflect selection for multiple uses. For example, sexual selection for large head size may enhance feeding efficiency. In contrast, morphological characteristics of the heads of fossorial reptiles suggests that fossoriality may have evolved at the expense of reduced effectiveness in feeding. Our research focused on the question: Does a fossorial lizard feed less effectively than a non-fossorial lizard? To answer this question, we measured the time, number of bites, and oxygen consumption by sand-swimming (Chalcides ocellatus) and epigeal (Eumeces inexpectatus) skinks feeding on crickets. These lizard species were similar in mass, but different in body form: Chalcides had longer bodies and smaller heads than Eumeces. For lizards of the same mass, Chalcides were unable to eat prey as large as those eaten by Eumeces, Chalcides took longer to eat prey of the same size than did Eumeces, and the aerobic energy cost of eating crickets of the same relative size (cricket mass/lizard mass) tended to be greater for Chalcides than for Eumeces. The ecologically relevant costs of feeding appear to be the upper limit to the size of prey and the time of feeding. Both costs would restrict the energy intake per unit time of Chalcides. Moreover, given the same energy requirements and prey community, Chalcides would have to feed more often and would take longer to feed than would Eumeces. Both factors would increase the exposure of Chalcides to predators relative to that of Eumeces. To reduce the risk of predation, Chalcides would have to reduce energy intake or fulfill its energy requirements with relatively small prey, or both. These conclusions are potentially confounded in two ways. The first is that male Eumeces have relatively large heads as a result of sexual selection. Thus, the differences we observed between Chalcides and Eumeces (most of our specimens were males) could have been the result of reduced costs of feeding for Eumeces due to sexual selection and not the result of enhanced costs of feeding for Chalcides. A more likely explanation is that differences in the costs of feeding observed between these species reflect adaptations for fossoriality by Chalcides and sexual selection on Eumeces. Our results may also be confounded because we compared laboratory reared Chalcides with field captured Eumeces. Any deterimental effects of captivity on the vigor of Chalcides would increase their costs of feeding relative to those of Eumeces. Although short-term captivity is not associated with changes in the metabolic capcity of lizards, effects of long-term captivitiy are unknown.  相似文献   

19.
Early marine trophic interactions of wild and hatchery chum salmon (Oncorhynchus keta) were examined as a potential cause for the decline in harvests of adult wild chum salmon in Taku Inlet, Southeast Alaska. In 2004 and 2005, outmigrating juvenile chum salmon were sampled in nearshore habitats of the inlet (spring) and in epipelagic habitat at Icy Strait (summer) as they approached the Gulf of Alaska. Fish were frozen for energy density determination or preserved for diet analyses, and hatchery stocks were identified from the presence of thermal marks on otoliths. We compared feeding intensity, diets, energy density, and size relationships of wild and hatchery stocks (n = 3123) across locations and weeks. Only hatchery fish feeding intensity was negatively correlated with fish abundance. In both years, hatchery chum salmon were initially larger and had greater energy density than wild fish, but lost condition in early weeks after release as they adapted to feeding on wild prey assemblages. Diets differed between the stocks at all inlet locations, but did not differ for hatchery salmon between littoral and neritic habitats in the outer inlet, where the stocks overlapped most. Both diets and energy density converged by late June. Therefore, if density-dependent interactions affect wild chum salmon, these effects must be very rapid because survivors in Icy Strait showed few differences. Our study also demonstrates that hatchery release strategies used near Taku Inlet successfully promote early spatial segregation and prey partitioning, which reduce the probability of competition between wild and hatchery chum salmon stocks.  相似文献   

20.
Movements of six basking sharks (4.0-6.5 m total body length, L(T)) swimming at the surface were tracked and horizontal velocities determined. Sharks were tracked for between 1.8 and 55 min with between 4 and 21 mean speed determinations per shark track. The mean filter-feeding swimming speed was 0.85 m s(-1) (+/-0.05 S.E., n=49 determinations) compared to the non-feeding (cruising) mean speed of 1.08 m s(-1) (+/-0.03 S.E., n=21 determinations). Both absolute (m s(-1)) and specific (L s(-1)) swimming speeds during filter-feeding were significantly lower than when cruise swimming with the mouth closed, indicating basking sharks select speeds approximately 24% lower when engaged in filter-feeding. This reduction in speed during filter-feeding could be a behavioural response to avoid increased drag-induced energy costs associated with feeding at higher speeds. Non-feeding basking sharks (4 m L(T)) cruised at speeds close to, but slightly faster ( approximately 18%) than the optimum speed predicted by the Weihs (1977) [Weihs, D., 1977. Effects of size on the sustained swimming speeds of aquatic organisms. In: Pedley, T.J. (Ed.), Scale Effects in Animal Locomotion. Academic Press, London, pp. 333-338.] optimal cruising speed model. In contrast, filter-feeding basking sharks swam between 29 and 39% slower than the speed predicted by the Weihs and Webb (1983) [Weihs, D., Webb, P.W., 1983. Optimization of locomotion. In: Webb, P.W., Weihs, D. (Eds.), Fish Biomechanics. Praeger, New York, pp. 339-371.] optimal filter-feeding model. This significant under-estimation in observed feeding speed compared to model predictions was most likely accounted for by surface drag effects reducing optimum speeds of tracked sharks, together with inaccurate parameter estimates used in the general model to predict optimal speeds of basking sharks from body size extrapolations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号