首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The minimum inhibitory concentration values for a group of pyrimidine derivatives were determined for Gram-positive and Gram-negative bacteria and yeast. The active compounds were further screened. The effect of these compounds on growth and morphology was tested, and their structural antimicrobial activity is discussed.  相似文献   

2.
5-styryl-2-furoylmethyltriphenyl phosphonium bromides and their derivatives produce (due to their chemical structure) to a greater or lesser extent the pronounced antimicrobic effect on a number of test cultures of the Gram-positive and Gram-negative bacteria. The Gram-positive microorganisms Staphylococcus aureus and B. subtilis proved to be most sensitive to the studied compounds.  相似文献   

3.
A number of N-substituted piperazinylquinolone derivatives were synthesized and evaluated for antibacterial activity against Gram-positive and Gram-negative bacteria. Preliminary results indicated that most compounds tested in this study demonstrated comparable or better activity against Staphylococcus aureus and Staphylococcus epidermidis than their parent piperazinylquinolones as reference drugs. Among these derivatives, ciprofloxacin derivative 5a, containing N-[2-[5-(methylthio)thiophen-2-yl]-2-oxoethyl] residue, showed significant improvement of potency against staphylococci, maintaining Gram-negative coverage.  相似文献   

4.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.  相似文献   

5.
A series of quinolone derivatives, containing different heterocyclic amines were prepared. Synthesized compounds were evaluated for their in vitro antimicrobial activities against two Gram-positive bacteria, three Gram-negative bacteria as well as four fungi. All the derivatives showed good activity towards Gram-positive bacteria and less activity towards Gram-negative bacteria. They also showed moderate to comparable activity against Aspergillus niger and Candida albicans and low to moderate antifungal activity against Aspergillus fumigatus and Aspergillus flavus.  相似文献   

6.

Background  

Chitosanases (EC 3.2.1.132) hydrolyze the polysaccharide chitosan, which is composed of partially acetylated β-(1,4)-linked glucosamine residues. In nature, chitosanases are produced by a number of Gram-positive and Gram-negative bacteria, as well as by fungi, probably with the primary role of degrading chitosan from fungal and yeast cell walls for carbon metabolism. Chitosanases may also be utilized in eukaryotic cell manipulation for intracellular delivery of molecules formulated with chitosan as well as for transformation of filamentous fungi by temporal modification of the cell wall structures.  相似文献   

7.
Chalcone derivatives have been synthesized by reaction of 1-(2,5-dimethyl-furan-3-yl)-ethanone with corresponding active aldehyde in ethanolic NaOH in microwave oven. The structure of these compounds was established by elemental analysis, IR, 1H NMR, 13C NMR, and EI-MS spectral analysis. The anti-bacterial activity of these compounds was first tested in vitro by the disc diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug chloramphenicol. The results showed that pyrazol containing chalcone (compound 8) inhibited both types of bacteria (Gram-positive and Gram-negative) better than chloramphenicol.  相似文献   

8.
Aims:  To prepare 1,5-anhydro- d -fructose (AF) derivatives, test their microbial inhibition spectrum, and to further examine the most effective AF derivative against Pseudomonas aeruginosa and malignant blood cell lines.
Methods and Results:  Microthecin and nine other AF derivatives were synthesized from AF. The 10 compounds were tested in vitro against Gram-positive (GP) and Gram-negative (GN) bacteria, yeasts and moulds using a well diffusion method and in a Bioscreen growth analyser. Of the test compounds, microthecin exhibited the most significant antibacterial activity at 100–2000 ppm against both GP and GN bacteria, including Ps. aeruginosa. Further tests with three malignant blood cell lines ( Mutu, Ramos, Raji ) and one normal cell line indicated that microthecin was a cell toxin, with a cell mortality >85% at 50 ppm. The other nine AF derivatives demonstrated low or no antimicrobial activity.
Conclusions:  Microthecin was active 100–2000 ppm against GP and GN bacteria including Ps. aeruginosa , but was inactive against yeasts and moulds. Microthecin was also a cytotoxin to some mammalian cell lines.
Significance and Impact of the Study:  Microthecin might have potential for development as a novel drug against Ps. aeruginosa and to target cancer cells. It might also be developed as a food processing aid to control bacterial growth.  相似文献   

9.
The increase in the treatment efficacy due to the enhanced permeability and retention properties and the decrease in the minimum inhibitory concentration (MIC) are the vital challenges related to the administration of the antibiotic drugs. In the present paper, we describe a novel delivery system of gatifloxacin (GFLX) from O-carboxymethylchitosan (OCMCS). GFLX is a fourth-generation fluoroguinolone, which has shown promise with excellent activity against both Gram-positive cocci and Gram-negative bacteria both in vitro and in vivo. OCMCS is a biocompatible amphiphilic derivative of chitosan. GFLX could be entrapped into OCMCS by the interaction between OCMCS and GFLX, which was characterized by fluorescence spectrum, transmission electron microscope, and dynamic light scattering techniques. The release behaviors of GFLX from this proposed delivery system in phosphate-buffered saline (PBS) solution at 37 °C were studied by fluorescence spectroscopy. The MIC of OCMCS formulation was evaluated. The results demonstrate that the release of GFLX from OCMCS formulation is slower than that from GFLX solution. In vitro bacteria antiproliferative activity assay confirms that the MIC of OCMCS formulation against Gram-negative bacteria is fourfold lower than the system without OCMCS. However, it seems that OCMCS has insignificant effect against Gram-positive bacteria. These results suggest that OCMCS matrix has obvious “transmission effect” on Gram-negative bacteria.  相似文献   

10.
A series of N'-1-[2-anilino-3-pyridyl]carbonyl-1-benzenesulfonohydrazide derivatives (7a-i) was synthesized and five of them were selected by the National Cancer Institute (NCI) and evaluated for their in vitro anticancer activity. Three of the investigated compounds 7d, 7f and 7g exhibited significant anticancer activity in the primary assay and further tested against a panel of 60 human tumour cell lines. Compound 7g showed 50% growth inhibitory activity in leukaemia, melanoma, lung cancer, colon cancer, renal cancer and breast cancer cells with GI(50) value of 3.2-9.6 microM. The synthesized compounds (7a-i) were also evaluated for their antibacterial activity against various Gram-positive and Gram-negative strains of bacteria. Most of these compounds showed better inhibitory activity in comparison to the standard drugs.  相似文献   

11.
A novel class of selective anti-Helicobacter pylori agents, 2-oxo-2H-chromene-3-carboxamide derivatives, were prepared and evaluated for their anti-bacterial activity. All synthesized compounds showed little or no activity against different species of Gram-positive and Gram-negative bacteria and against various strains of pathogenic fungi. Some of them exhibited a potent and specific inhibitory effect on the growth of H. pylori, including metronidazole-resistant strains, in the 0.0039-16 microg/mL MIC range. A cytotoxic screening by the Trypan blue dye exclusion assay was also carried out on the most active compounds as anti-H. pylori agents. Among the derivatives examined for their cytotoxic potential, a number of them induced low cytotoxic effects.  相似文献   

12.
The research reported here deals with co-action of the hop (Humulus lupulus)-derived anti-bacterial compounds, lupulone and xanthohumol, with several antibiotics. Among the antibiotics investigated for their co-action, polymyxin B sulfate, tobramycin and ciprofloxacin had a positive co-action in inhibiting selected test bacteria. The disc/well-diffusion assay and the minimum inhibitory concentration test (MIC) were employed to determine co-action. Both Gram-positive and Gram-negative bacteria were used in the evaluation. There was some co-action against all Gram-positive bacteria tested. Surprisingly, there was some positive co-action even against certain Gram-negative bacteria but not against others. Particularly, there was no co-action against E.coli. An antibacterial cream with lupulone, neomycin and polymyxin B sulfate was prepared and showed co-action. Ideas for other practical applications of this effect are put forth. The mechanism of the synergistic effect is briefly discussed but no attempt was made to prove it experimentally.  相似文献   

13.
Antiproliferative and antibacterial activities of nine glutarimide derivatives (19) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50?=?9–27?μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 68 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625?mg/mL; 1.97?×?10?3?mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields.  相似文献   

14.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

15.
A facile and ecofriendly synthesis of new chromonyl chalcones 3a-b from 3-formylchromone 1 and active methyl compounds 2a-b is reported under thermal solvent-free heating condition in good yields. The chromonyl chalcones 3a-b were used as intermediates under green condition for the synthesis of new bioactive pyrazoline derivatives 4a-f. The compounds were tested for antimicrobial activity by disk diffusion assay with slight modifications against Gram-positive, Gram-negative strains of bacteria as well as fungal strains. The investigation of antimicrobial screening revealed that compounds 3a-b and 4a-f showed antibacterial and antifungal activities.  相似文献   

16.
The antimicrobial activity of copaiba oils was tested against Gram-positive and Gram-negative bacteria, yeast, and dermatophytes. Oils obtained from Copaifera martii, Copaifera officinalis, and Copaifera reticulata (collected in the state of Acre) were active against Gram-positive species (Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus faecalis) with minimum inhibitory concentrations ranging from 31.3-62.5 microg/ml. The oils showed bactericidal activity, decreasing the viability of these Gram-positive bacteria within 3 h. Moderate activity was observed against dermatophyte fungi (Trichophyton rubrum and Microsporum canis). The oils showed no activity against Gram-negative bacteria and yeast. Scannning electron microscopy of S. aureus treated with resin oil from C. martii revealed lysis of the bacteria, causing cellular agglomerates. Transmission electron microscopy revealed disruption and damage to the cell wall, resulting in the release of cytoplasmic compounds, alterations in morphology, and a decrease in cell volume, indicating that copaiba oil may affect the cell wall.  相似文献   

17.
Multi-drug-resistant infections caused by Gram-negative pathogens are rapidly increasing, highlighting the need for new chemotherapies. Unlike Gram-positive bacteria, where many different chemical classes of antibiotics show efficacy, Gram-negatives are intrinsically insensitive to many antimicrobials including the macrolides, rifamycins, and aminocoumarins, despite intracellular targets that are susceptible to these drugs. The basis for this insensitivity is the presence of the impermeant outer membrane of Gram-negative bacteria in addition to the expression of pumps and porins that reduce intracellular concentrations of many molecules. Compounds that sensitize Gram-negative cells to "Gram-positive antibiotics", antibiotic adjuvants, offer an orthogonal approach to addressing the crisis of multi-drug-resistant Gram-negative pathogens. We performed a forward chemical genetic screen of 30,000 small molecules designed to identify such antibiotic adjuvants of the aminocoumarin antibiotic novobiocin in Escherichia coli. Four compounds from this screen were shown to be synergistic with novobiocin including inhibitors of the bacterial cytoskeleton protein MreB, cell wall biosynthesis enzymes, and DNA synthesis. All of these molecules were associated with altered cell shape and small molecule permeability, suggesting a unifying mechanism for these antibiotic adjuvants. The potential exists to expand this approach as a means to develop novel combination therapies for the treatment of infections caused by Gram-negative pathogens.  相似文献   

18.
We report the synthesis of new mono, di and tri phosphonium ionic liquids and the evaluation of their antibacterial activities on both Gram-positive and Gram-negative bacteria from the ESKAPE-group. Among the molecules synthesized some of them reveal a strong bactericidal activity (MIC?=?0.5?mg/L) for Gram-positive bacteria (including resistant strains) comparable to that of standard antibiotics. A comparative Gram positive and Gram negative antibacterial activities shows that the nature of counter-ion has no significant effects. Interestingly, the increase of phosphonium lateral chains (from 4 to 8 carbons) results in a decrease of antibacterial activities. However, the increase of the spacer length has a positive influence on the activity on both Gram-positive and Gram-negative bacteria except for E. aerogenes. Finally, the increased charge density has no effect on the Gram-positive antibacterial activities (MIC between 2 and 4?mg/L) but seems to attenuate (except for P. aeruginosa) the discrimination between Gram-positive and Gram-negative. Overall these results suggest a unique mechanism of action of these triphenylamine-phosphonium ionic liquid derivatives.  相似文献   

19.
The impact of metabolic state on Cd adsorption onto bacterial cells   总被引:1,自引:0,他引:1  
This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7.  相似文献   

20.
Diosgenyl 2-amino-2-deoxy-β-d-glucopyranoside is a semisynthetic saponin with antimicrobial and antitumor activities. To search for more effective analogues, N-aminoacyl and N-hydroxyacyl derivatives of this saponin were synthesized conventionally and with microwave assistance, and tested against the human pathogenic fungi and Gram-positive and Gram-negative bacteria. None of the tested compounds exhibit activity against Gram-negative bacteria. Almost all of the synthesized N-aminoacyl saponins exhibit antifungal activity and act effectively against Gram-positive bacteria, some better than the parent compound. The best acting saponins are the same size and possess sarcosine or l- or d-alanine attached to the parent glucosaminoside. Shorter and longer aminoacyl residues are less advantageous. d-Alanine derivative is the most effective against Gram positive bacteria. Structure-activity relationship (SAR) analysis indicates that the free α-amino group in aminoacyl residue is necessary for antimicrobial activities of the tested saponins. (N-Acetyl)aminoacyl and N-hydroxyacyl analogs are inactive. Measurements of the hemolytic activities demonstrate that the best acting saponins are not toxic towards human red blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号