首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Climate change, alien species, and use of land for intensive farming and development are causing severe threat to the plant genetic diversity worldwide. Hence, conservation of biodiversity is considered fundamental and also provides the livelihoods to millions of people worldwide. Medicinal plants play a key role in the treatment of a number of diseases, and they are only the source of medicine for majority of people in the developing world. The tropical regions of the world supply the bulk of current global demand for “natural medicine,” albeit with increasing threat to populations in the world and its genetic diversity. India is a major center of origin and diversity of crop and medicinal plants. India poses out 20,000 species of higher plants, one third of it being endemic and 500 species are categorized to have medicinal value. The Western Ghats is one of the major repositories of medicinal plants. It harbors around 4,000 species of higher plants of which 450 species are threatened. Currently, the number of species added to the red list category in this region is increasing, and the valuable genetic resources are being lost at a rapid rate. Demand for medicinal plants is increasing, and this leads to unscrupulous collection from the wild and adulteration of supplies. Providing high-quality planting material for sustainable use and thereby saving the genetic diversity of plants in the wild is important. During the last 25 years of intensive research, Tropical Botanic Garden and Research Institute has developed in vitro protocol for rapid regeneration and establishment of about 40 medicinally important rare and threatened plants of Western Ghats. In situ conservation alone would not be effective in safeguarding these important species. Thus, utilizing the biotechnoligical approach to complement ex situ conservation program is becoming vital. Propagating biotechnology tools in plant conservation program is a prerequisite to succeed in sustainable use and to complement the existing ex situ measures. In addition to propagation, storage of these valuable genetic resources is equally important. In vitro slow growth of 35 species and cryopreservation using embryo/meristem/seed in 20 different species of rare medicinal plants of this region is accomplished. Plants developed in vitro of ten medicinal plants, which have restricted distribution, were reintroduced in the natural habitat as well.  相似文献   

2.
Since past three decades new discoveries in plant genetic engineering have shown remarkable potentials for crop improvement. Agrobacterium Ti plasmid based DNA transfer is no longer the only efficient way of introducing agronomically important genes into plants. Recent studies have explored a novel plant genetic engineering tool, Rhizobia sp., as an alternative to Agrobacterium, thereby expanding the choice of bacterial species in agricultural plant biotechnology. Rhizobia sp. serve as an open license source with no major restrictions in plant biotechnology and help broaden the spectrum for plant biotechnologists with respect to the use of gene transfer vehicles in plants. New efficient transgenic plants can be produced by transferring genes of interest using binary vector carrying Rhizobia sp. Studies focusing on the interactions of Rhizobia sp. with their hosts, for stable and transient transformation and expression of genes, could help in the development of an adequate gene transfer vehicle. Along with being biologically beneficial, it may also bring a new means for fast economic development of transgenic plants, thus giving rise to a new era in plant biotechnology, viz. “Rhizobia mediated transformation technology.”  相似文献   

3.
The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.  相似文献   

4.
Conservation In vitro of threatened plants—Progress in the past decade   总被引:1,自引:0,他引:1  
Summary In vitro techniques have found increasing use in the conservation of threatened plants in recent years and this trend is likely to continue as more species face risk of extinction. The Micropropagation Unit at Royal Botanic Gardens, Kew, UK (RBG Kew) has an extensive collection of in vitro plants including many threatened species from throughout the world. The long history of the unit and the range of plants cultured have enabled considerable expertise to be amassed in identifying the problems and developing experimental strategies for propagation and conservation of threatened plants. While a large body of knowledge is available on the in vitro culture of plants, there are limited publications relating to threatened plant conservation. This review highlights the progress in in vitro culture and conservation of threatened plants in the past decade (1995–2005) and suggests future research directions. Works on non-threatened plants are also included wherever methods have applications in rare plant conservation. Recalcitrant plant materials collected from the wild or ex situ collections are difficult to grow in culture. Different methods of sterilization and other treatments to establish clean material for culture initiation are reviewed. Application of different culture methods for multiplication, and use of unconventional materials for rooting and transplantation are reviewed. As the available plant material for culture initiation is scarce and in many cases associated with inherent problems such as low viability and endogenous contamination, reliable protocols on multiplication, rooting, and storage methods are very important. In this context, photoautotrophic micropropagation has the potential for development as a routine method for the in vitro conservation of endangered plants. Long-term storage of material in culture is challenging and the potential applications of cryopreservation are significant in this area. Future conservation biotechnology research and its applications must be aimed at conserving highly threatened, mainly endemic, plants from conservation hotspots.  相似文献   

5.
Hightech from Natures Pharmacy Plants produce a plethora of valuable natural products, many of which are used as pharmaceuticals. Today, a large fraction of the novel pharmaceuticals entering the market are biomolecules of proteinaceous nature (antibodies, hormones, cytokines, vaccines) and they are produced in transgenic organisms like bacteria, yeast, or mammalian cell cultures. Plants are also capable to serve as a production host for novel therapeutics like monoclonal antibodies, hormones like insulin, or subunit vaccines. Transgenic plants and plant cell cultures are already modified to produce protein biopharmaceuticals and vaccines on a large scale basis and in some aspects they have clear advantages over conventional production hosts (e.g. cost of goods, speed of production, or posttranslational modification of therapeutic proteins). Therefore, plant biotechnology could create entirely novel medicinal plants with applications not known before.  相似文献   

6.
Pharmacologically active ingredients in plants can cause significant morbidity through their increasingly common use in herbal alternative medicines and dietary supplements. Monitoring consumer products for the presence of toxic plants is encumbered by the lack of rapid and specific assays. To create a sensitive, reliable, fast, and broad-spectrum assay for medicinal or toxic plant species, we tested multiplexed ligation-dependent probe amplification (MLPA), which requires partial genomic DNA sequences from species of plants that are not well represented in currently available genetic databases. Genomic DNA was obtained from 21 species of medicinal and/or toxic plants. The PCR products were amplified from these plants and cloned for sequencing. The MLPA method was successful with DNA samples from many different species. The use of a microarray to facilitate screening of potentially thousands of plants in a single assay also was successful. The combination of the specificity of the MLPA assay with the broad-scale capabilities of microarray technology should make this an especially useful tool in screening in foods and commercial herbal preparations to identify the plant compounds actually present. Other applications could potentially extend to the identification of any plant species in samples for academic botanical studies and for biodefense and forensics applications.  相似文献   

7.
Summary Medicinal plants are valuable sources of medicinal and many other pharmaceutical products. The conventional propagation method is the principal means of propagation and takes a long time for multiplication because of a low rate of fruit set, and/or poor germination and also sometimes clonal uniformity is not maintained through seeds. The plants used in the phyto-pharmaceutical preparations are obtained mainly from the natural growing areas. With the increase in the demand for the erude drugs, the plants are being overexploited, threatening the survival of many rate species. Also, many medicinal plant species are disappearing at an alarming rate due to rapid agricultural and urban development, uncontrolled deforestation, and indiscriminate collection. Advanced biotechnological methods of culturing plant cells and tissues should provide new means for conserving and rapidly propagating valuable, rare, and endangered medicinal plants. The purpose of the present review is to focus the application of tissue culture technology for in vitro propagation via somatic embryogenesis and organogenesis and the cell suspension culture with suitable examples reported earlier. An overview of tissue culture studies on important Chinese medicinal plants and related species is presented.  相似文献   

8.
《农业工程》2021,41(4):253-258
There are several wild and cultivated plants that offer excellent opportunities for being used as herbal and therapeutic agents. The identification of medicinal properties of plants and their effectiveness in treating diseases are important components in medicinal plant research and this can pave ways for further improvements in traditional drug use. Climatic conditions and phytogeography in Pakistan are ideal for naturally occurring diverse flora and managed cultivation of hundreds of plants of medicinal significance. Nigella sativa commonly known as the black seed is an important medicinal plant that has been widely used as a multipurpose medicinal agent in different countries since old times. The plant is abundantly cultivated in Pakistan for uses as condiment and medicines. It possesses important classes of bioactive compounds among which thymoquinone has attracted significant attention from the scientific community because of its active role in treating a diverse spectrum of diseases. The black seeds are used for reducing adverse effects of arthritis, asthma, inflammation, liver and gastro disorders besides their potential role in diabetes and cancers. The focus of this review is to highlight the medicinal significance of N. sativa in traditional medicine and opportunities for exploitation in contemporary medicine.  相似文献   

9.
Antibody molecular farming in plants and plant cells   总被引:1,自引:0,他引:1  
`Molecular Farming' is a novel approach to the production of pharmaceuticals, where valuable recombinant proteins can be produced in transgenic organisms on an agricultural scale. Plants have been traditionally used as a source of medicines, but the use of transgenic plants in molecular farming represents a novel source of molecular medicines that include plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies. Until recently, the wide use of these molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell cultures. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines could be synthesised in plants. The goal of this Molecular Farming technology is to produce pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial cultures. Here, we examine the production of recombinant antibodies by Molecular Farming.  相似文献   

10.
Infectious (or Communicable) diseases are not only the past but also the present problem in developing as well as developed countries. It is caused by various pathogenic microbes like fungi, bacteria, parasites and virus etc. The medicinal plants and nano-silver have been used against the pathogenic microbes. Herbal medicines are generally used for healthcare because they have low price and wealthy source of antimicrobial properties. Like medicinal plants, silver nanoparticles also have emergent applications in biomedical fields due to their immanent therapeutic performance. Here, we also explore the various plant parts such as bark, stem, leaf, fruit and seed against Gram negative and Gram-positive bacteria, using different solvents for extraction i.e. methanol, ethyl acetate, chloroform, acetone, n. hexane, butanol, petroleum ether and benzene. Since ancient to date most of the countries have been used herbal medicines, but in Asia, some medicinal plants are commonly used in rural and backward areas as a treatment for infectious diseases. In this review, we provide simple information about medicinal plants and Silver nanoparticles with their potentialities such as antiviral, bactericidal and fungicidal. Additionally, the present review to highlights the versatile applications of medicinal plants against honey bee pathogen such as fungi (Ascosphaera apis), mites (Varroa spp. and Tropilaelaps sp.), bacteria (Melissococcus plutonius Paenibacillus larvae), and microsporidia (Nosema apis and Nosema ceranae). In conclusion, promising nonchemical (plant extracts) are innocuous to adult bees. So, we strongly believed that this effort was made to evaluate the status of medicinal plants researches globally.  相似文献   

11.
There are over a hundred chemical substances that have been derived from plants for use as drugs and medicines; many more await and medicinal plants are the target of all the attention. The structural diversity of natural products still surpasses that from synthetic compounds and is far beyond any imagination of experts in the field. For many pharmaceutical companies, it is a good argument to investigate natural compounds. Many plants with antidiabetic virtues are known in traditional medicine over the world. The CPID (Centre de Pharmacologie et Innovation dans le Diabète) proposes a technology program to purify new natural antidiabetic substances. A large antidiabetic plant library is constructed for a high-throughput pharmacological screening with cell cultures.  相似文献   

12.
We used a quantitative ethnobotanical approach to analyze factors influencing the use value of plant species among men and women of the Rarámuri people in Cuiteco, Chihuahua, Mexico. We constructed a use value index (UV) combining the use frequency (U) and the quality perception (Q) of useful plant species by local people. We identified all plant species used by the Rarámuri and classified them into 14 general use categories. We interviewed 34 households in the village to compare men and women’s knowledge on the five main general use categories (and on their respective subcategories and specific uses), to document how they practice gathering activities and to calculate scores of plants UV. A total of 226 useful plant species were identified, but only 12% of them had high UV scores for the 42 specific uses defined. When the overall knowledge of plant species was examined, no significant differences were detected between men and women, but significant differences were identified in general use categories such as medicinal plants, plants for construction and domestic goods, but not in plants used as food and firewood. We identified a division of labor in gathering activities associated with gender, with women mainly gathering medicinal and edible plants and being involved in preparing medicines and food, whereas men were primarily gathering and using plants for manufacturing domestic goods, firewood, and building materials. Plant species UV associated to gender were significantly different between men and women at the level of specific uses in the general category of domestic goods and building. Frequency of use is highly associated with plant species quality perception.  相似文献   

13.
Many of the edible wild plants that are included in local food baskets have both therapeutic and dietary functions. Such medicinal foods have been part of Eastern medicinal theories since ancient times and have recently received attention in the USA and Europe within the fields of functional foods, neutraceuticals and phyto-nutrients. This paper provides an example from Vietnam of the continued use of a multitude of edible wild vegetables. Vietnamese traditional medicine also holds an important position within the health care system and many of the plants that are used have both dietary and medicinal functions. Using a combination of qualitative and quantitative techniques (Rapid Rural Appraisal and Food Frequency Questionnaires), information on over 90 species of edible wild plants was obtained from 4 villages in the Mekong Delta and the Central Highlands. About a third of the plants also had therapeutic roles, forty percent were used also as livestock feeds and one fifth were used as food/livestock feed/ medicine. From a nutrition viewpoint it is important to pay attention to this group of traditional foods for several reasons. Their direct nutritional contribution is often significant but neglected. Very little is known about the health benefits of regular consumption of small quantities of medicinal foods and an important “medicinal role” of traditional plant medicines may be the contribution of small quantities of trace minerals and vitamins. The parallel functions as livestock feeds make animal products more accessible to poor households and help improve the quality of their diets.  相似文献   

14.
For thousands of years, plant based herbal medicines have been utilized by millions of people all over the world. Plant materials or products are used in different folk/traditional medical systems, such as the Chinese, African and Indian medical systems, like Siddha, Ayurveda, Unani, and Homeopathy. Tinospora cordifolia (TC) is a medicinal plant belonging to the family Menispermaceae. It is a big deciduous, climbing shrub growing prevalently in the tropical part of Indian subcontinent regions such as India, Pakistan, Nepal, Bhutan, Bangladesh and Srilanka, and in Myanmar, and China. Guduchi, Giloy, Shindilkodi, and Amritha are all the common names for this plant. Extracts from different parts of this herbal plant have been used to treat many diseases. In Ayurvedic medicine, extract from this plant is used for preparing “rasayanas”, which is known to cure diabetes, skin diseases, allergic conditions, jaundice, cardiovascular diseases, rheumatoid arthritis, poisoning, and microbial infections. T. cordifolia has a many bioactive phytochemicals that have been isolated from its aerial parts and roots. Many bioactive principles have been reported from this plant which belong to various classes like alkaloids, aliphatic compounds, diterpenoid lactones, phenolics, flavonoids, glycosides, sesquiterpenoids, lignans, steroids and polysaccharides. T. cordifolia possesses medicinal properties such as antioxidant, antiallergic, antiinflammatory, antimicrobial, antiviral, antidote, antitumor, antileprotic, antispasmodic, and antidiabetic properties. The present review will provide a comprehensive therapeutic potential of T. cordifolia.  相似文献   

15.
Schizonepeta tenuifolia (Korean name “Hyung-Gae”) is an oriental medicinal plant that is widely used in Korea, China and Japan. S. tenuifolia (Hyung-Gae) has many pharmacological activities and is mostly used for many medicinal preparations. The dried aerial part (spikes and stems) of three oriental medicinal plants, S. tenuifolia (Hyung-Gae), Agastache rugosa (Kwhak-Hyang) and Elsholtzia ciliata (Hyang-Yoo) belonging to the same family, mint family Labiaceae, have such similar shape and smell that it is difficult to differentiate between them. The trnL-F regions of chloroplast DNA of the three medicinal plants were sequenced and used as targets in multiplex PCR reaction to identify S. tenuifolia. After alignment of trnL-F sequences of the authenticated plant samples, one single nucleotide polymorphism (SNP) specific to S. tenuifolia was found. Based on this SNP, a new primer was designed that specifically amplifies the trnL-F region of S. tenuifolia. The established multiplex-PCR was proven to be effective in the differentiation of commercial S. tenuifolia samples from A. rugosa and E. ciliata. This rapid and accurate molecular method is highly promising for use in the food industry.  相似文献   

16.
For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.  相似文献   

17.

Medicinal plants are a rich source of natural products used to treat many diseases; therefore, they are the basis for a new drug discovery. Plants are capable of generating different bioactive secondary metabolites, but a large amount of botanical material is often necessary to obtain small amounts of the target substance. Nowadays, many medicinal plants are becoming rather scarce. For this reason, it is important to point out the interactions between endophytic microorganisms and the host plant, because endophytes are able to produce highly diverse compounds, including those from host plants that have important biological activities. Thence, this review aims at presenting the richness in bioactive compounds of the medicinal plants from Tabebuia and Handroanthus genera, as well as important aspects about endophyte-plant interactions, with emphasis on the production of bioactive compounds by endophytic fungi, which has been isolated from various medicinal plants for such a purpose. Furthermore, bio-prospection of natural products synthesized by endophytes isolated from the aforementioned genera used in traditional medicine could be used to treat illnesses.

  相似文献   

18.
The rapid growth rate of human population, along with the public health crisis encountered in many regions, particularly in developing world, creates an urgent need for the discovery of alternative drugs. Because medicinal plants are not distributed randomly across lineages, it has been suggested that phylogeny along with traditional knowledge of plant uses can guide the identification of new medicinally useful plants. In this study, we combined different statistical approaches to test for phylogenetic signal in 33 categories of plant uses in South Africa. Depending on the null models considered, we found evidence for signal in up to 45% of plant use categories, indicating the need for multiple tests combination to maximize the chance of discovering new medicinal plants when applying a phylogenetic comparative approach. Furthermore, although there was no signal in the diversity of medicinal uses—that is, total number of medicinal uses recorded for each plant—our results indicate that taxa that are evolutionarily closely related have significantly more uses than those that are evolutionarily isolated. Our study therefore provides additional support to the body of the literature that advocates for the inclusion of phylogeny in bioscreening medicinal flora for the discovery of alternative medicines.  相似文献   

19.
Wang  Wenyi  Yuan  Jumao  Jiang  Changan 《Plant molecular biology》2021,105(1-2):43-53
Key message

Present review summarizes the current applications of nanobodies in plant science and biotechnology, including plant expression of nanobodies, plant biotechnological applications, nanobody-based immunodetection, and nanobody-mediated resistance against plant pathogens.

Abstract

Nanobodies (Nbs) are variable domains of heavy chain-only antibodies (HCAbs) isolated from camelids. In spite of their single domain structure, nanobodies display many unique features, such as small size, high stability, and cryptic epitopes accessibility, which make them ideal for sophisticated applications in plants and animals. In this review, we summarize the current applications of nanobodies in plant science and biotechnology, focusing on nanobody expression in plants, plant biotechnological applications, determination of plant toxins and pathogens, and nanobody-mediated resistance against plant pathogens. Prospects and challenges of nanobody applications in plants are also discussed.

  相似文献   

20.
Site-specific recombination systems, such as FLP–FRT and Cre–lox, carry out precise recombination reactions on their respective targets in plant cells. This has led to the development of two important applications in plant biotechnology: marker-gene deletion and site-specific gene integration. To draw benefits of both applications, it is necessary to implement them in a single transformation process. In order to develop this new process, the present study evaluated the efficiency of FLP–FRT system for excising marker gene from the transgene locus developed by Cre–lox mediated site-specific integration in rice. Two different FLP recombinases, the wild-type FLP (FLPwt) and its thermostable derivative, FLPe, were used for the excision of marker gene flanked by FLP recombination targets (FRT). While marker excision mediated by FLPwt was undetectable, use of FLPe resulted in efficient marker excision in a number of transgenic lines, with the relative efficiency reaching up to ~100%. Thus, thermo-stability of FLP recombinase in rice cells is critical for efficient site-specific recombination, and use of FLPe offers practical solutions to FLP–FRT-based biotechnology applications in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号