首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimeric ring-shaped sliding clamp of E. coli DNA polymerase III (beta subunit, homolog of eukaryotic PCNA) is loaded onto DNA by the clamp loader gamma complex (homolog of eukaryotic Replication Factor C, RFC). The delta subunit of the gamma complex binds to the beta ring and opens it. The crystal structure of a beta:delta complex shows that delta, which is structurally related to the delta' and gamma subunits of the gamma complex, is a molecular wrench that induces or traps a conformational change in beta such that one of its dimer interfaces is destabilized. Structural comparisons and molecular dynamics simulations suggest a spring-loaded mechanism in which the beta ring opens spontaneously once a dimer interface is perturbed by the delta wrench.  相似文献   

2.
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.  相似文献   

3.
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.  相似文献   

4.
The internal workings of a DNA polymerase clamp-loading machine.   总被引:14,自引:2,他引:12       下载免费PDF全文
Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicase, DNA polymerase III holoenzyme. The gamma complex uses ATP to open the beta clamp and assemble it onto DNA. Surprisingly, ATP is not needed for gamma complex to crack open the beta clamp. The function of ATP is to regulate the activity of one subunit, delta, which opens the clamp simply by binding to it. The delta' subunit acts as a modulator of the interaction between delta and beta. On binding ATP, the gamma complex is activated such that the delta' subunit permits delta to bind beta and crack open the ring at one interface. The clamp loader-open clamp protein complex is now ready for an encounter with primed DNA to complete assembly of the clamp around DNA. Interaction with DNA stimulates ATP hydrolysis which ejects the gamma complex from DNA, leaving the ring to close around the duplex.  相似文献   

5.
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism.  相似文献   

6.
Jeruzalmi D  O'Donnell M  Kuriyan J 《Cell》2001,106(4):429-441
The gamma complex, an AAA+ ATPase, is the bacterial homolog of eukaryotic replication factor C (RFC) that loads the sliding clamp (beta, homologous to PCNA) onto DNA. The 2.7/3.0 A crystal structure of gamma complex reveals a pentameric arrangement of subunits, with stoichiometry delta':gamma(3):delta. The C-terminal domains of the subunits form a circular collar that supports an asymmetric arrangement of the N-terminal ATP binding domains of the gamma motor and the structurally related domains of the delta' stator and the delta wrench. The structure suggests a mechanism by which the gamma complex switches between a closed state, in which the beta-interacting element of delta is hidden by delta', and an open form similar to the crystal structure, in which delta is free to bind to beta.  相似文献   

7.
Li F  Liu Q  Chen YY  Yu ZN  Zhang ZP  Zhou YF  Deng JY  Bi LJ  Zhang XE 《Mutation research》2008,637(1-2):101-110
It has been hypothesized that DNA mismatch repair (MMR) is coupled with DNA replication; however, the involvement of DNA polymerase III subunits in bacterial DNA MMR has not been clearly elucidated. In an effort to better understand the relationship between these 2 systems, the potential interactions between the Escherichia coli MMR protein and the clamp loader subunits of E. coli DNA polymerase III were analyzed by far western blotting and then confirmed and characterized by surface plasmon resonance (SPR) imaging. The results showed that the MMR key protein MutL could directly interact with both the individual subunits delta, delta', and gamma and the complex of these subunits (clamp loader). Kinetic parameters revealed that the interactions are strong and stable, suggesting that MutL might be involved in the recruitment of the clamp loader during the resynthesis step in MMR. The interactions between MutL, the delta and gamma subunits, and the clamp loader were observed to be modulated by ATP. Deletion analysis demonstrated that both the N-terminal residues (1-293) and C-terminal residues (556-613) of MutL are required for interacting with the subunits delta and delta'. Based on these findings and the available information, the network of interactions between the MMR components and the DNA polymerase III subunits was established; this network provides strong evidence to support the notion that DNA replication and MMR are highly associated with each other.  相似文献   

8.
The beta sliding clamp encircles the primer-template and tethers DNA polymerase III holoenzyme to DNA for processive replication of the Escherichia coli genome. The clamp is formed via hydrophobic and ionic interactions between two semicircular beta monomers. This report demonstrates that the beta dimer is a stable closed ring and is not monomerized when the gamma complex clamp loader (gamma(3)delta(1)delta(1)chi(1)psi(1)) assembles the beta ring around DNA. delta is the subunit of the gamma complex that binds beta and opens the ring; it also does not appear to monomerize beta. Point mutations were introduced at the beta dimer interface to test its structural integrity and gain insight into its interaction with delta. Mutation of two residues at the dimer interface of beta, I272A/L273A, yields a stable beta monomer. We find that delta binds the beta monomer mutant at least 50-fold tighter than the beta dimer. These findings suggest that when delta interacts with the beta clamp, it binds one beta subunit with high affinity and utilizes some of that binding energy to perform work on the dimeric clamp, probably cracking one dimer interface open.  相似文献   

9.
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.  相似文献   

10.
The gamma complex (gamma delta delta' chi psi) subassembly of DNA polymerase III holoenzyme transfers the beta subunit onto primed DNA in a reaction which requires ATP hydrolysis. Once on DNA, beta is a "sliding clamp" which tethers the polymerase to DNA for highly processive synthesis. We have examined beta and the gamma complex to identify which subunit(s) hydrolyzes ATP. We find the gamma complex is a DNA dependent ATPase. The beta subunit, which lacks ATPase activity, enhances the gamma complex ATPase when primed DNA is used as an effector. Hence, the gamma complex recognizes DNA and couples ATP hydrolysis to clamp beta onto primed DNA. Study of gamma complex subunits showed no single subunit contained significant ATPase activity. However, the heterodimers, gamma delta and gamma delta', were both DNA-dependent ATPases. Only the gamma delta ATPase was stimulated by beta and was functional in transferring the beta from solution to primed DNA. Similarity in ATPase activity of DNA polymerase III holoenzyme accessory proteins to accessory proteins of phage T4 DNA polymerase and mammalian DNA polymerase delta suggests the basic strategy of chromosome duplication has been conserved throughout evolution.  相似文献   

11.
Sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. The Escherichia coli gamma complex loads the beta sliding clamp onto DNA in an ATP-dependent reaction in which ATP binding and hydrolysis modulate the affinity of the gamma complex for beta and DNA. This is the second of two reports (Williams, C. R., Snyder, A. K., Kuzmic, P., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4376-4385) addressing the question of how ATP binding and hydrolysis regulate specific interactions with DNA and beta. Mutations were made to an Arg residue in a conserved SRC motif in the delta' and gamma subunits that interacts with the ATP site of the neighboring gamma subunit. Mutation of the delta' subunit reduced the ATP-dependent beta binding activity, whereas mutation of the gamma subunits reduced the DNA binding activity of the gamma complex. The gamma complex containing the delta' mutation gave a pre-steady-state burst of ATP hydrolysis, but at a reduced rate and amplitude relative to the wild-type gamma complex. A pre-steady-state burst of ATP hydrolysis was not observed for the complex containing the gamma mutations, consistent with the reduced DNA binding activity of this complex. The differential effects of these mutations suggest that ATP binding at the gamma1 site may be coupled to conformational changes that largely modulate interactions with beta, whereas ATP binding at the gamma2 and/or gamma3 site may be coupled to conformational changes that have a major role in interactions with DNA. Additionally, these results show that the "arginine fingers" play a structural role in facilitating the formation of a conformation that has high affinity for beta and DNA.  相似文献   

12.
This report outlines the protein requirements and subunit organization of the DNA replication apparatus of Streptococcus pyogenes, a Gram-positive organism. Five proteins coordinate their actions to achieve rapid and processive DNA synthesis. These proteins are: the PolC DNA polymerase, tau, delta, delta', and beta. S. pyogenes dnaX encodes only the full-length tau, unlike the Escherichia coli system in which dnaX encodes two proteins, tau and gamma. The S. pyogenes tau binds PolC, but the interaction is not as firm as the corresponding interaction in E. coli, underlying the inability to purify a PolC holoenzyme from Gram-positive cells. The tau also binds the delta and delta' subunits to form a taudeltadelta' "clamp loader." PolC can assemble with taudeltadelta' to form a PolC.taudeltadelta' complex. After PolC.taudeltadelta' clamps beta to a primed site, it extends DNA 700 nucleotides/second in a highly processive fashion. Gram-positive cells contain a second DNA polymerase, encoded by dnaE, that has homology to the E. coli alpha subunit of E. coli DNA polymerase III. We show here that the S. pyogenes DnaE polymerase also functions with the beta clamp.  相似文献   

13.
DNA polymerase III holoenzyme (holoenzyme) is the 10-subunit replicase of the Escherichia coli chromosome. In this report, pure preparations of delta, delta', and a gamma chi psi complex are resolved from the five protein gamma complex subassembly. Using these subunits and other holoenzyme subunits isolated from overproducing plasmid strains of E. coli, the rapid and highly processive holoenzyme has been reconstituted from only five pure single subunits: alpha, epsilon, gamma, delta, and beta. The preceding report showed that of the three subunits in the core polymerase, only a complex of alpha (DNA polymerase) and epsilon (3'-5' exonuclease) are required to assemble a processive holoenzyme on a template containing a preinitiation complex (Studwell, P.S., and O'Donnell, M. (1990) J. Biol. Chem. 265, 1171-1178). This report shows that of the five proteins in the gamma complex only a heterodimer of gamma and delta is required with the beta subunit to form the ATP-activated preinitiation complex with a primed template. Surprisingly, the delta' subunit does not form an active complex with gamma but forms a fully active heterodimer complex with the tau subunit (as does delta). Hence, the tau delta' and gamma delta heterodimers are fully active in the preinitiation complex reaction with beta and primed DNA. Holoenzymes reconstituted using the alpha epsilon complex, beta subunit, and either gamma delta or tau delta' are fully processive in DNA synthesis, and upon completing the template they rapidly cycle to a new primed template endowed with a preinitiation complex clamp. Since the holoenzyme molecule contains all of these accessory subunits (gamma, delta, tau, delta', and beta) in all likelihood it has the capacity to form two preinitiation complex clamps simultaneously at two primer termini. Two primer binding components within one holoenzyme may mediate its rapid cycling to multiple primers on the lagging strand and also provides functional evidence for the hypothesis of holoenzyme as a dimeric polymerase capable of simultaneous replication of both leading and lagging strands of a replication fork.  相似文献   

14.
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex.  相似文献   

15.
Clamp loader proteins catalyze assembly of circular sliding clamps on DNA to enable processive DNA replication. During the reaction, the clamp loader binds primer-template DNA and positions it in the center of a clamp to form a topological link between the two. Clamp loaders are multi-protein complexes, such as the five protein Escherichia coli, Saccharomyces cerevisiae, and human clamp loaders, and the two protein Pyrococcus furiosus and Methanobacterium thermoautotrophicum clamp loaders, and thus far the site(s) responsible for binding and selecting primer-template DNA as the target for clamp assembly remain unknown. To address this issue, we analyzed the interaction between the E.coli gamma complex clamp loader and DNA using UV-induced protein-DNA cross-linking and mass spectrometry. The results show that the delta subunit in the gamma complex makes close contact with the primer-template junction. Tryptophan 279 in the delta C-terminal domain lies near the 3'-OH primer end and may play a key role in primer-template recognition. Previous studies have shown that delta also binds and opens the beta clamp (hydrophobic residues in the N-terminal domain of delta contact beta. The clamp-binding and DNA-binding sites on delta appear positioned for facile entry of primer-template into the center of the clamp and exit of the template strand from the complex. A similar analysis of the S.cerevisiae RFC complex suggests that the dual functionality observed for delta in the gamma complex may be true also for clamp loaders from other organisms.  相似文献   

16.
In eukaryotic DNA replication, replication factor-C (RFC) acts as the clamp loader, which correctly installs the sliding clamp onto DNA strands at replication forks. The eukaryotic RFC is a complex consisting of one large and four small subunits. We have determined the crystal structure of the clamp loader small subunit (RFCS) from Pyrococcus furiosus. The six subunits, of which four bind ADP in their canonical nucleotide binding clefts, assemble into a dimer of semicircular trimers. The crescent-like architecture of each subunit formed by the three domains resembles that of the delta' subunit of the E. coli clamp loader. The trimeric architecture of archaeal RFCS, with its mobile N-terminal domains, involves intersubunit interactions that may be conserved in eukaryotic functional complexes.  相似文献   

17.
The PolC holoenzyme replicase of the Gram-positive Staphylococcus aureus pathogen has been reconstituted from pure subunits. We compared individual S. aureus replicase subunits with subunits from the Gram-negative Escherichia coli polymerase III holoenzyme for activity and interchangeability. The central organizing subunit, tau, is smaller than its Gram-negative homolog, yet retains the ability to bind single-stranded DNA and contains DNA-stimulated ATPase activity comparable with E. coli tau. S. aureus tau also stimulates PolC, although they do not form as stabile a complex as E. coli polymerase III.tau. We demonstrate that the extreme C-terminal residues of PolC bind to and function with beta clamps from different bacteria. Hence, this polymerase-clamp interaction is highly conserved. Additionally, the S. aureus delta wrench of the clamp loader binds to E. coli beta. The S. aureus clamp loader is even capable of loading E. coli and Streptococcus pyogenes beta clamps onto DNA. Interestingly, S. aureus PolC lacks functionality with heterologous beta clamps when they are loaded onto DNA by the S. aureus clamp loader, suggesting that the S. aureus clamp loader may have difficulty ejecting from heterologous clamps. Nevertheless, these overall findings underscore the conservation in structure and function of Gram-positive and Gram-negative replicases despite >1 billion years of evolutionary distance between them.  相似文献   

18.
The eukaryotic replication factor C (RFC) clamp loader is an AAA+ spiral-shaped heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp processivity factor on DNA. In this study, we examined the roles of individual RFC subunits in opening the PCNA clamp. Interestingly, Rfc1, which occupies the position analogous to the delta clamp-opening subunit in the Escherichia coli clamp loader, is not required to open PCNA. The Rfc5 subunit is required to open PCNA. Consistent with this result, Rfc2.3.4.5 and Rfc2.5 subassemblies are capable of opening and unloading PCNA from circular DNA. Rfc5 is positioned opposite the PCNA interface from Rfc1, and therefore, its action with Rfc2 in opening PCNA indicates that PCNA is opened from the opposite side of the interface that the E. coli delta wrench acts upon. This marks a significant departure in the mechanism of eukaryotic and prokaryotic clamp loaders. Interestingly, the Rad.RFC DNA damage checkpoint clamp loader unloads PCNA clamps from DNA. We propose that Rad.RFC may clear PCNA from DNA to facilitate shutdown of replication in the face of DNA damage.  相似文献   

19.
Replication factor C (RFC) is a heteropentameric AAA+ protein clamp loader of the proliferating cell nuclear antigen (PCNA) processivity factor. The prokaryotic homologue, gamma complex, is also a heteropentamer, and structural studies show the subunits are arranged in a circle. In this report, Saccharomyces cerevisiae RFC protomers are examined for their interaction with each other and PCNA. The data lead to a model of subunit order around the circle. A characteristic of AAA+ oligomers is the use of bipartite ATP sites in which one subunit supplies a catalytic arginine residue for hydrolysis of ATP bound to the neighboring subunit. We find that the RFC(3/4) complex is a DNA-dependent ATPase, and we use this activity to determine that RFC3 supplies a catalytic arginine to the ATP site of RFC4. This information, combined with the subunit arrangement, defines the composition of the remaining ATP sites. Furthermore, the RFC(2/3) and RFC(3/4) subassemblies bind stably to PCNA, yet neither RFC2 nor RFC4 bind tightly to PCNA, indicating that RFC3 forms a strong contact point to PCNA. The RFC1 subunit also binds PCNA tightly, and we identify two hydrophobic residues in RFC1 that are important for this interaction. Therefore, at least two subunits in RFC make strong contacts with PCNA, unlike the Escherichia coli gamma complex in which only one subunit makes strong contact with the beta clamp. Multiple strong contact points to PCNA may reflect the extra demands of loading the PCNA trimeric ring onto DNA compared with the dimeric beta ring.  相似文献   

20.
Crystal structures of an Escherichia coli clamp loader have provided insight into the mechanism by which this molecular machine assembles ring-shaped sliding clamps onto DNA. The contributions made to the clamp loading reaction by two subunits, chi and psi, which are not present in the crystal structures, were determined by measuring the activities of three forms of the clamp loader, gamma(3)deltadelta', gamma(3)deltadelta'psi, and gamma(3)deltadelta'psichi. The psi subunit is important for stabilizing an ATP-induced conformational state with high affinity for DNA, whereas the chi subunit does not contribute directly to clamp loading in our assays lacking single-stranded DNA-binding protein. The psi subunit also increases the affinity of the clamp loader for the clamp in assays in which ATPgammaS is substituted for ATP. Interestingly, the affinity of the gamma(3)deltadelta' complex for beta is no greater in the presence than in the absence of ATPgammaS. A role for psi in stabilizing or promoting ATP- and ATPgammaS-induced conformational changes may explain why large conformational differences were not seen in gamma(3)deltadelta' structures with and without bound ATPgammaS. The beta clamp partially compensates for the activity of psi when this subunit is not present and possibly serves as a scaffold on which the clamp loader adopts the appropriate conformation for DNA binding and clamp loading. Results from our work and others suggest that the psi subunit may introduce a temporal order to the clamp loading reaction in which clamp binding precedes DNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号