首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The eubacterial chaperonins GroEL and GroES are essential chaperones and primarily assist protein folding in the cell. Although the molecular mechanism of the GroEL system has been examined previously, the mechanism by which GroEL and GroES assist folding of nascent polypeptides during translation is still poorly understood. We previously demonstrated a co-translational involvement of the Escherichia coli GroEL in folding of newly synthesized polypeptides using a reconstituted cell-free translation system (Ying, B. W., Taguchi, H., Kondo, M., and Ueda, T. (2005) J. Biol. Chem. 280, 12035-12040). Employing the same system here, we further characterized the mechanism by which GroEL assists folding of translated proteins via encapsulation into the GroEL-GroES cavity. The stable co-translational association between GroEL and the newly synthesized polypeptide is dependent on the length of the nascent chain. Furthermore, GroES is capable of interacting with the GroEL-nascent peptide-ribosome complex, and experiments using a single-ring variant of GroEL clearly indicate that GroES association occurs only at the trans-ring, not the cis-ring, of GroEL. GroEL holds the nascent chain on the ribosome in a polypeptide length-dependent manner and post-translationally encapsulates the polypeptide using the GroES cap to accomplish the chaperonin-mediated folding process.  相似文献   

2.
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.  相似文献   

3.
Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of deltatigdeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C deltatigdeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of deltatigdeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/= 60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.  相似文献   

4.
Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of DeltatigDeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C DeltatigDeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of DeltatigDeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/=60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.  相似文献   

5.
6.
In bacteria, Trigger factor (TF) is the first chaperone that interacts with nascent polypeptides as soon as they emerge from the exit tunnel of the ribosome. TF binds to the ribosomal protein L23 located next to the tunnel exit of the large subunit, with which it forms a cradle-like space embracing the polypeptide exit region. It cooperates with the DnaK Hsp70 chaperone system to ensure correct folding of a number of newly translated cytosolic proteins in Escherichia coli. Whereas TF is exclusively found in prokaryotes and chloroplasts, Saccharomyces cerevisiae, a eukaryotic microorganism, has a three-member Hsp70-J protein complex, Ssb-Ssz-Zuo, which could act as a ribosome-associated folding facilitator. In the work reported in this volume of Molecular Microbiology, Rauch et al. (2005, Mol Microbiol, doi:10.1111/j.1365-2958.2005.04690.x) examined the functional similarity of the ribosome-associated chaperones in prokaryotes and eukaryotes. In spite of the fact that TF and the Hsp70-based triad are structurally unrelated, TF can bind to the yeast ribosome via Rpl25 (the L23 counterpart) and can substitute for some, but not all, of the functions assigned to Ssb-Ssz-Zuo in yeast. The functional conservation of the ribosome-associated chaperones without structural similarity is remarkable and suggests that during evolution nature has employed a common design but divergent components to facilitate folding of polypeptides as they emerge from the ribosomal exit, a fundamental process required for the efficient expression of genetic information.  相似文献   

7.
Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

8.
It has been shown that in Escherichia coli the chaperone DnaK is necessary for the late stages of 50S and 30S ribosomal subunit assembly in vivo. Here we focus on the roles of other HSPs (heat-shock proteins), including the chaperonin GroEL, in addition to DnaK, in ribosome biogenesis at high temperature. GroEL is shown to be required for the very late 45S-->50S step in the biogenesis of the large ribosome subunit, but not for 30S assembly. Interestingly, overproduction of GroES/GroEL can partially compensate for a lack of DnaK/DnaJ at 44 degrees C.  相似文献   

9.
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.  相似文献   

10.
Molecular chaperones are essential for the correct folding of proteins in the cell under physiological and stress conditions. Two activities have been traditionally attributed to molecular chaperones: (1) preventing aggregation of unfolded polypeptides and (2) assisting in the correct refolding of chaperone-bound denatured polypeptides. We discuss here a novel function of molecular chaperones: catalytic solubilization and refolding of stable protein aggregates. In Escherichia coli, disaggregation is carried out by a network of ATPase chaperones consisting of a DnaK core, assisted by the cochaperones DnaJ, GrpE, ClpB, and GroEL-GroES. We suggest a sequential mechanism in which (a) ClpB exposes new DnaK-binding sites on the surface of the stable protein aggregates; (b) DnaK binds the aggregate surfaces and, by doing so, melts the incorrect hydrophobic associations between aggregated polypeptides; (c) ATP hydrolysis and DnaK release allow local intramolecular refolding of native domains, leading to a gradual weakening of improper intermolecular links; (d) DnaK and GroEL complete refolding of solubilized polypeptide chains into native proteins. Thus, active disaggregation by the chaperone network can serve as a central cellular tool for the recovery of native proteins from stress-induced aggregates and actively remove disease-causing toxic aggregates, such as polyglutamine-rich proteins, amyloid plaques, and prions.  相似文献   

11.
Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.  相似文献   

12.
Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.  相似文献   

13.
Recombinant expression of actin in bacteria results in non-native species that aggregate into inclusion bodies. Actin is a folding substrate of TRiC, the chaperonin of the eukaryotic cytosol. By employing bacterial in vitro translation lysates supplemented with purified chaperones, we have found that TRiC is the only eukaryotic chaperone necessary for correct folding of newly translated actin. The actin thus produced binds deoxyribonuclease I and polymerizes into filaments, hallmarks of its native state. In contrast to its rapid folding in the eukaryotic cytosol, actin translated in TRiC-supplemented bacterial lysate folds with slower kinetics, resembling the kinetics upon refolding from denaturant. Lysate supplementation with the bacterial chaperonin GroEL/ES or the DnaK/DnaJ/GrpE chaperones leads to prevention of actin aggregation, yet fails to support its correct folding. This combination of in vitro bacterial translation and TRiC-assisted folding allows a detailed analysis of the mechanisms necessary for efficient actin folding in vivo. In addition, it provides a robust alternative for the production of substantial amounts of eukaryotic proteins that otherwise misfold or lead to cellular toxicity upon expression in heterologous hosts.  相似文献   

14.
The GroEL/GroES chaperonin system mediates protein folding in the bacterial cytosol. Newly synthesized proteins reach GroEL via transfer from upstream chaperones such as DnaK/DnaJ (Hsp70). Here we employed single molecule and ensemble FRET to monitor the conformational transitions of a model substrate as it proceeds along this chaperone pathway. We find that DnaK/DnaJ stabilizes the protein in collapsed states that fold exceedingly slowly. Transfer to GroEL results in unfolding, with a fraction of molecules reaching locally highly expanded conformations. ATP-induced domain movements in GroEL cause transient further unfolding and rapid mobilization of protein segments with moderate hydrophobicity, allowing partial compaction on the GroEL surface. The more hydrophobic regions are released upon subsequent protein encapsulation in the central GroEL cavity by GroES, completing compaction and allowing rapid folding. Segmental chain release and compaction may be important in avoiding misfolding by proteins that fail to fold efficiently through spontaneous hydrophobic collapse.  相似文献   

15.
A protein-synthesizing system based on a minimal set of purified components was used to investigate the roles molecular chaperones play in the folding of newly synthesized polypeptides. After we ascertained that this system lacks intrinsic chaperones, the effect of adding chaperones in a co-translational or post-translational manner was directly evaluated. An aggregation-prone single-chain antibody was used as the model nascent chain. The participation of the trigger factor or the DnaK system during translation efficiently increased the level of functional protein that was generated. In addition, both systems also acted as chaperones after translation had been stopped. In contrast, the GroEL/ES system showed little or no co- or post-translational assistance in folding.  相似文献   

16.
17.
The chaperonins GroEL and GroES are essential mediators of protein folding. GroEL binds nonnative protein, ATP, and GroES, generating a ternary complex in which protein folding occurs within the cavity capped by GroES (cis-cavity). We determined the crystal structure of the native GroEL-GroES-ADP homolog from Thermus thermophilus, with substrate proteins in the cis-cavity, at 2.8 A resolution. Twenty-four in vivo substrate proteins within the cis-cavity were identified from the crystals. The structure around the cis-cavity, which encapsulates substrate proteins, shows significant differences from that observed for the substrate-free Escherichia coli GroEL-GroES complex. The apical domain around the cis-cavity of the Thermus GroEL-GroES complex exhibits a large deviation from the 7-fold symmetry. As a result, the GroEL-GroES interface differs considerably from the previously reported E. coli GroEL-GroES complex, including a previously unknown contact between GroEL and GroES.  相似文献   

18.
G Fong  W A Bridger 《Biochemistry》1992,31(24):5661-5664
Succinyl-CoA synthetase of Escherichia coli (alpha 2B2 subunit structure) has been shown to fold and assemble without participation by molecular chaperones. Renaturation experiments showed that purified bacterial chaperone GroEL has no effect on the folding and assembly of the active tetrameric enzyme. When isolated 35S-labeled alpha or beta subunits were incubated with GroEL in the absence of ATP, there was no complex formation between the subunits and GroEL. These in vitro results were confirmed by in vivo analysis of the folding and assembly of newly synthesized succinyl-CoA synthetase subunits. When expression of the subunits was induced in E. coli strains that bear GroEL or GroES temperature-sensitive mutations, the assembly of active succinyl-CoA synthetase was not affected as the temperature was raised to 43 degrees C. These and other observations are discussed that indicate that folding and assembly of succinyl-CoA synthetase may be independent of assistance by any chaperone.  相似文献   

19.
In bacteria, trigger factor (TF) is the molecular chaperone that interacts with the ribosome to assist the folding of nascent polypeptides. Studies in vitro have provided insights into the function and mechanism of TF. Much is to be elucidated, however, about how TF functions in vivo. Here, we use single‐molecule tracking, in combination with genetic manipulations, to study the dynamics and function of TF in living E. coli cells. We find that TF, besides interacting with the 70S ribosome, may also bind to ribosomal subunits and form TF‐polypeptide complexes that may include DnaK/DnaJ proteins. The TF‐70S ribosome interactions are highly dynamic inside cells, with an average residence time of ~0.2 s. Our results confirm that the signal recognition particle weakens TF's interaction with the 70S ribosome, and further identify that this weakening mainly results from a change in TF's binding to the 70S ribosome, rather than its unbinding. Moreover, using photoconvertible bimolecular fluorescence complementation, we selectively probe TF2 dimers in the cell and show that TF2 does not bind to the 70S ribosome but is involved in the post‐translational interactions with polypeptides. These findings contribute to the fundamental understanding of molecular chaperones in assisting protein folding in living cells.  相似文献   

20.
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号