首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Ecologically mediated selection has increasingly become recognised as an important driver of speciation. The correlation between neutral genetic differentiation and environmental or phenotypic divergence among populations, to which we collectively refer to as isolation‐by‐ecology (IBE), is an indicator of ecological speciation. In a meta‐analysis framework, we determined the strength and commonality of IBE in nature. On the basis of 106 studies, we calculated a mean effect size of IBE with and without controlling for spatial autocorrelation among populations. Effect sizes were 0.34 (95% CI 0.24–0.42) and 0.26 (95% CI 0.13–0.37), respectively, indicating that an average of 5% of the neutral genetic differentiation among populations was explained purely by ecological contrast. Importantly, spatial autocorrelation reduced IBE correlations for environmental variables, but not for phenotypes. Through simulation, we showed how the influence of isolation‐by‐distance and spatial autocorrelation of ecological variables can result in false positives or underestimated correlations if not accounted for in the IBE model. Collectively, this meta‐analysis showed that ecologically induced genetic divergence is pervasive across time‐scales and taxa, and largely independent of the choice of molecular marker. We discuss the importance of these results in the context of adaptation and ecological speciation and suggest future research avenues.  相似文献   

2.
The distribution, spatial pattern and population dynamics of a species can be influenced by differences in the environment across its range. Spatial variation in climatic conditions can cause local populations to undergo disruptive selection and ultimately result in local adaptation. However, local adaptation can be constrained by gene flow and may favour resident individuals over migrants—both are factors critical to the assessment of invasion potential. The Natal fruit fly (Ceratitis rosa) is a major agricultural pest in Africa with a history of island invasions, although its range is largely restricted to south east Africa. Across Africa, C. rosa is genetically structured into two clusters (R1 and R2), with these clusters occurring sympatrically in the north of South Africa. The spatial distribution of these genotypic clusters remains unexamined despite their importance for understanding the pest's invasion potential. Here, C. rosa, sampled from 22 South African locations, were genotyped at 11 polymorphic microsatellite loci and assessed morphologically using geometric morphometric wing shape analyses to investigate patterns of population structure and determine connectedness of pest‐occupied sites. Our results show little to no intraspecific (population) differentiation, high population connectivity, high effective population sizes and only one morphological type (R2) within South Africa. The absence of the R1 morphotype at sites where it was previously found may be a consequence of differences in thermal niches of the two morphotypes. Overall, our results suggest high invasion potential of this species, that area‐wide pest management should be undertaken on a country‐wide scale, and that border control is critical to preventing further invasions.  相似文献   

3.
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially‐explicit, individual‐based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation‐by‐distance, isolation‐by‐barrier, and isolation‐by‐landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non‐equilibrium conditions after introduction of isolation‐by‐landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.  相似文献   

4.
The study of the factors structuring genetic variation can help to infer the neutral and adaptive processes shaping the demographic and evolutionary trajectories of natural populations. Here, we analyse the role of isolation by distance (IBD), isolation by resistance (IBR, defined by landscape composition) and isolation by environment (IBE, estimated as habitat and elevation dissimilarity) in structuring genetic variation in 25 blue tit (Cyanistes caeruleus) populations. We typed 1385 individuals at 26 microsatellite loci classified into two groups by considering whether they are located into genomic regions that are actively (TL; 12 loci) or not (NTL; 14 loci) transcribed to RNA. Population genetic differentiation was mostly detected using the panel of NTL. Landscape genetic analyses showed a pattern of IBD for all loci and the panel of NTL, but genetic differentiation estimated at TL was only explained by IBR models considering high resistance for natural vegetation and low resistance for agricultural lands. Finally, the absence for IBE suggests a lack of divergent selection pressures associated with differences in habitat and elevation. Overall, our study shows that markers located in different genomic regions can yield contrasting inferences on landscape‐level patterns of realized gene flow in natural populations.  相似文献   

5.
T. Druet  M. Gautier 《Molecular ecology》2017,26(20):5820-5841
Inbreeding results from the mating of related individuals and may be associated with reduced fitness because it brings together deleterious variants in one individual. In general, inbreeding is estimated with respect to an arbitrary base population consisting of ancestors that are assumed unrelated. We herein propose a model‐based approach to estimate and characterize individual inbreeding at both global and local genomic scales by assuming the individual genome is a mosaic of homozygous‐by‐descent (HBD) and non‐HBD segments. The HBD segments may originate from ancestors tracing back to different periods in the past defining distinct age‐related classes. The lengths of the HBD segments are exponentially distributed with class‐specific parameters reflecting that inbreeding of older origin generates on average shorter stretches of observed homozygous markers. The model is implemented in a hidden Markov model framework that uses marker allele frequencies, genetic distances, genotyping error rates and the sequences of observed genotypes. Note that genotyping errors, low‐fold sequencing or genotype‐by‐sequencing data are easily accommodated under this framework. Based on simulations under the inference model, we show that the genomewide inbreeding coefficients and the parameters of the model are accurately estimated. In addition, when several inbreeding classes are simulated, the model captures them if their ages are sufficiently different. Complementary analyses, either on data sets simulated under more realistic models or on human, dog and sheep real data, illustrate the range of applications of the approach and how it can reveal recent demographic histories among populations (e.g., very recent bottlenecks or founder effects). The method also allows to clearly identify individuals resulting from extreme consanguineous matings.  相似文献   

6.
Seasonal declines of fitness‐related traits are often attributed to environmental effects or individual‐level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation‐by‐time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian‐linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation‐by‐time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time‐dependent, adaptive adjustment of reproductive effort.  相似文献   

7.
One of the most prominent manifestations of the ongoing climate warming is the retreat of glaciers and ice sheets around the world. Retreating glaciers result in the formation of new ponds and lakes, which are available for colonization. The gradual appearance of these new habitat patches allows us to determine to what extent the composition of asexual Daphnia (water flea) populations is affected by environmental drivers vs. dispersal limitation. Here, we used a landscape genetics approach to assess the processes structuring the clonal composition of species in the D. pulex species complex that have colonized periglacial habitats created by ice‐sheet retreat in western Greenland. We analysed 61 populations from a young (<50 years) and an old cluster (>150 years) of lakes and ponds. We identified 42 asexual clones that varied widely in spatial distribution. Beta‐diversity was higher among older than among younger systems. Lineage sorting by the environment explained 14% of the variation in clonal composition whereas the pure effect of geographical distance was very small and statistically insignificant ( = 0.010, P = 0.085). Dispersal limitation did not seem important, even among young habitat patches. The observation of several tens of clones colonizing the area combined with environmentally driven clonal composition of populations illustrates that population assembly of asexual species in the Arctic is structured by environmental gradients reflecting differences in the ecology of clones.  相似文献   

8.
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central‐northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation‐by‐distance and isolation‐by‐barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi‐permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long‐range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River.  相似文献   

9.
10.
11.
The characterization of species limits and diversification patterns across the geographically complex Indo‐Pacific region has presented biogeographers and evolutionary biologists with great challenges. In the present study, we investigated the brown cuckoo dove (Macropygia amboinensis s.l.) species complex, whose distribution spans this entire region. We analyzed whether bioacoustic data are congruent with previous plumage‐based classifications and whether glacial land bridges have impacted bioacoustic diversification in these doves. Using an unusually large vocal dataset of > 300 recordings from over 30 islands and 24 taxa, we analyzed 29 bioacoustic frequency and temporal parameters and tested for a correlation between geographical and bioacoustic distances. We found a weak correlation between geographical and bioacoustic distances. We identified numerous lineages that are bioacoustically distinct and proposed their elevation to the species level, leading to a doubling of the number of species in this complex and indicating a high proportion of cryptic species‐level diversity that has previously gone unrecognized.  相似文献   

12.
Phenotypic plasticity is an important strategy for coping with changing environments. However, environmental change usually results in strong directional selection, and little is known empirically about how this affects plasticity. If genes affecting a trait value also affect its plasticity, selection on the trait should influence plasticity. Synthetic outbred populations of Arabidopsis thaliana were selected for earlier flowering under simulated spring- and winter-annual conditions to investigate the correlated response of flowering time plasticity and its effect on family-by-environment variance (Vg×e) within each selected line. We found that selection affected plasticity in an environmentally dependent manner: under simulated spring-annual conditions, selection increased the magnitude of plastic response but decreased Vg×e; selection under simulated winter-annual conditions reduced the magnitude of plastic response but did not alter Vg×e significantly. As selection may constrain future response to environmental change, the environment for crop breeding and ex situ conservation programmes should be carefully chosen. Models of species persistence under environmental change should also consider the interaction between selection and plasticity.  相似文献   

13.
Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi‐arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read‐based genome assembly, was used to give a near‐complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species‐specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.  相似文献   

14.
In Bolivia, the Hispanic dual surname system is used. To describe the isonymic structure of Bolivia, the surname distribution of 12,139,448 persons registered in the 2006 census data was studied in 9 districts and 112 provinces of the nation, for a total of 23,244,064 surnames. The number of different surnames found was 174,922. Matrices of isonymic distances between the administrative units (districts and provinces) were constructed and tested for correlation with geographic distance. In the 112 provinces, isonymic distances were correlated with geographic distance (r = 0.545 ± 0.011 for Euclidean, 0.501 ± 0.012 for Nei's, and 0.556 ± 0.010 for Lasker's distance). The multiple regression of the surname effective number (α), equivalent to the allele effective number in a genetic system, was nonsignificant on latitude and longitude; however, it was highly significant and negative on altitude (r = ?0.72). Because the Andes extend from north to south in west‐central Bolivia, random inbreeding was lowest in the eastern districts, and highest in mountainous western Bolivia. Average α for the provinces was 122 ± 2; for the districts, it was 216 ± 29, and for the whole of Bolivia it was 213. The geographical distribution of α in the provinces is compatible with the settlement of subsequent groups of migrants moving from east and north toward the center and south of Bolivia. The relative frequency of indigenous surnames is correlated positively with altitude. This suggests that the country was populated by recent low‐density demic diffusion over a low‐density indigenous population. This may have been a common phenomenon in the immigration to tropical South America. Am J Phys Anthropol, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects.  相似文献   

16.
Analysis of genetic diversity represents a fundamental component of ecological risk assessments in contaminated environments. Many studies have assessed the genetic implications of chronic radiation exposure at Chernobyl, generally recording an elevated genetic diversity and mutation rate in rodents, plants, and birds inhabiting contaminated areas. Only limited studies have considered genetic diversity in aquatic biota at Chernobyl, despite the large number of freshwater systems where elevated dose rates will persist for many years. Consequently, the present study aimed to assess the effects of chronic radiation exposure on genetic diversity in the freshwater crustacean, Asellus aquaticus, using a genome‐wide SNP approach (Genotyping‐by‐sequencing). It was hypothesized that genetic diversity in A. aquaticus would be positively correlated with dose rate. A. aquaticus was collected from six lakes in Belarus and the Ukraine ranging in dose rate from 0.064 to 27.1 µGy/hr. Genotyping‐by‐sequencing analysis was performed on 74 individuals. A significant relationship between geographical distance and genetic differentiation confirmed the Isolation‐by‐Distance model. Conversely, no significant relationship between dose rate and genetic differentiation suggested no effect of the contamination gradient on genetic differentiation between populations. No significant relationship between five measures of genetic diversity and dose rate was recorded, suggesting that radiation exposure has not significantly influenced genetic diversity in A. aquaticus at Chernobyl. This is the first study to adopt a genome‐wide SNP approach to assess the impacts of environmental radiation exposure on biota. These findings are fundamental to understanding the long‐term success of aquatic populations in contaminated environments at Chernobyl and Fukushima.  相似文献   

17.
The first North American RAD Sequencing and Genomics Symposium, sponsored by Floragenex (http://www.floragenex.com/radmeeting/), took place in Portland, Oregon (USA) on 19 April 2011. This symposium was convened to promote and discuss the use of restriction-site-associated DNA (RAD) sequencing technologies. RAD sequencing is one of several strategies recently developed to increase the power of data generated via short-read sequencing technologies by reducing their complexity (Baird et al. 2008; Huang et al. 2009; Andolfatto et al. 2011; Elshire et al. 2011). RAD sequencing, as a form of genotyping by sequencing, has been effectively applied in genetic mapping and quantitative trait loci (QTL) analyses in a range of organisms including nonmodel, genetically highly heterogeneous organisms (Table 1; Baird et al. 2008; Baxter et al. 2011; Chutimanitsakun et al. 2011; Pfender et al. 2011). RAD sequencing has recently found applications in phylogeography (Emerson et al. 2010) and population genomics (Hohenlohe et al. 2010). Considering the diversity of talks presented during this meeting, more developments are to be expected in the very near future.  相似文献   

18.
Genotype‐by‐environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide‐ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.  相似文献   

19.
Geographic patterns of genetic variation are shaped by multiple evolutionary processes, including genetic drift, migration and natural selection. Switchgrass (Panicum virgatum L.) has strong genetic and adaptive differentiation despite life history characteristics that promote high levels of gene flow and can homogenize intraspecific differences, such as wind‐pollination and self‐incompatibility. To better understand how historical and contemporary factors shape variation in switchgrass, we use genotyping‐by‐sequencing to characterize switchgrass from across its range at 98 042 SNPs. Population structuring reflects biogeographic and ploidy differences within and between switchgrass ecotypes and indicates that biogeographic history, ploidy incompatibilities and differential adaptation each have important roles in shaping ecotypic differentiation in switchgrass. At one extreme, we determine that two Panicum taxa are not separate species but are actually conspecific, ecologically divergent types of switchgrass adapted to the extreme conditions of coastal sand dune habitats. Conversely, we identify natural hybrids among lowland and upland ecotypes and visualize their genome‐wide patterns of admixture. Furthermore, we determine that genetic differentiation between primarily tetraploid and octoploid lineages is not caused solely by ploidy differences. Rather, genetic diversity in primarily octoploid lineages is consistent with a history of admixture. This suggests that polyploidy in switchgrass is promoted by admixture of diverged lineages, which may be important for maintaining genetic differentiation between switchgrass ecotypes where they are sympatric. These results provide new insights into the mechanisms shaping variation in widespread species and provide a foundation for dissecting the genetic basis of adaptation in switchgrass.  相似文献   

20.
Genetic interactions can play an important role in the evolution of reproductive strategies. In particular, negative dominance‐by‐dominance epistasis for fitness can theoretically favour sex and recombination. This form of epistasis can be detected statistically because it generates nonlinearity in the relationship between fitness and inbreeding coefficient. Measures of fitness in progressively inbred lines tend to show limited evidence for epistasis. However, tests of this kind can be biased against detecting an accelerating decline due to line losses at higher inbreeding levels. We tested for dominance‐by‐dominance epistasis in Drosophila melanogaster by examining viability at five inbreeding levels that were generated simultaneously, avoiding the bias against detecting nonlinearity that has affected previous studies. We find an accelerating rate of fitness decline with inbreeding, indicating that dominance‐by‐dominance epistasis is negative on average, which should favour sex and recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号