首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Thermal stability and pH optima of NADH-nitrate reductase-associated cytochrome c reductase and FMNH2-nitrate reductase from wild type, cv Steptoe or Winer, and mutants nar 1d, nar 1g, nar 1h, Xno 18 and Xno 19 were compared to determine if structural differences in the nitrate reductase protein could be detected. Also, the nitrate reductase-associated cytochrome c reductase from nar 1d was purified and compared with the wild type by peptide mapping. The pH optimum for FMNH2-nitrate reductase from Steptoe and nar 1h, and for NADH-cytochrome c reductase from Steptoe, nar 1d, nar 1g and nar 2a was 7.5. Thermal stabilities of the nitrate reductase-associated activities (FMNH2-nitrate reductase or NADH-cytochrome c reductase) from nar mutants were less than the Steptoe wild type, while Xno mutants were equal to the Winer wild type. Cleveland peptide maps of nar 1d NADH-cytochrome c reductase and Steptoe nitrate reductase were identicalwhen digested with endoprotease lys-C but were distinctly different in one peptide when digested with Staphylococcus aureus endoprotease V8. These results provide evidence that nar 1 gene codes for the nitrate reductase polypeptide.  相似文献   

2.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

3.
Summary The wild-type line and 14 nitrate reductase-deficient mutant cell lines of Nicotiana tabacum were tested for the presence of nitrate reductase partial activities, and for nitrite reductase and xanthine dehydrogenase activity. Data characterizing the electron donor specificity of nitrate reductase (EC 1.6.6.1., NADH:nitrate oxidoreductase) and nitrite reductase (EC 1.7.7.1., ferredoxin:nitrite oxidoreductase) of the wild-type line are presented. Three lines (designated cnx) simultaneously lack NADH-, FADH2-, red. benzyl viologen-nitrate reductase, and xanthine dehydrogenase activities, but retain the nitrate reductase-associated NADH-cytochrome c reductase activity. These mutants are, therefore, interpreted to be impaired in gene functions essential for the synthesis of an active molybdenum-containing cofactor. For cnx-68 and cnx-101, the sedimentation coefficient of the defective nitrate reductase molecules does not differ from that of the wild-type enzyme (7.6S). In 11 lines (designated nia) xanthine dehydrogenase activity is unaffected, and the loss of NADH-nitrate reductase is accompanied by a loss of all partial activities, including NADH-cytochrome c reductase. However, one line (nia-95) was found to possess a partially active nitrate reductase molecule, retaining its FADH2- and red. benzyl viologen nitrate reductase activity. It is likely that nia-95 is a mutation in the structural gene for the apoprotein. Both, the nia and cnx mutant lines exhibit nitrite reductase activity, being either nitrate-inducible or constitutive. Evidence is presented that, in Nicotiana tabacum, nitrate, without being reduced to nitrite, is an inducer of the nitrate assimilation pathway.  相似文献   

4.
Two nitrate reductase (NaR)-deficient mutants of pea (Pisum sativum L.), E1 and A300, both disturbed in the molybdenum cofactor function and isolated, respectively, from cv Rondo and cv Juneau, were tested for allelism and were compared in biochemical and growth characteristics. The F1 plants of the cross E1 × A300 possessed NaR and xanthine dehydrogenase (XDH) activities comparable to those of the wild types, indicating that these mutants belong to different complementation groups, representing two different loci. Therefore, mutant E1 represents, besides mutant A300 and the allelic mutants A317 and A334, a third locus governing NaR and is assigned the gene destignation nar 3. In comparison with the wild types, cytochrome c reductase activity was increased in both mutants. The mutants had different cytochrome c reductase distribution patterns, indicating that mutant A300 could be disturbed in the ability to dimerize NaR apoprotein monomers, and mutant E1 in the catalytic function of the molybdenum cofactor. In growth characteristics studied, A300 did not differ from the wild types, whereas fully grown leaves of mutant E1 became necrotic in soil and in liquid media containing nitrate.  相似文献   

5.
Summary Nicotiana tabacum mutant cell cultures lacking nitrate reductase activity were assayed for the presence of the molybdenum-cofactor using its ability to restore NADPH-nitrate reductase activity in extracts of Neurospora crassa nit-1 mycelia. The molybdenum-cofactor of the tobacco wild-type line was shown to complement efficiently the N. crassa nit-1 mutant in vitro. The molybdenum-cofactor seems to exist in a bound form, as acid-treatment was required for release of cofactor activity. Molybdate (5–10 mM), ascorbic acid, and anaerobic conditions greatly increased the activity of the cofactor, demonstrating its high lability and sensitivity to oxygen. Similar results were obtained with two tobacco nia mutants, which are defective in the apoprotein of nitrate reductase. The four cnx mutants studied were shown to contain exclusively an inactive form of the molybdenum-cofactor. This inactive cofactor could be reactivated in vitro and in vivo by unphysiologically high concentrations of molybdate (1–10 mM), thereby converting the cnx cells into highly active cofactor sources in vitro, and restoring nitrate reductase and xanthine dehydrogenase in vivo to partial acitivity. Thus the defect of the cnx mutants resides in a lack of molybdenum as a catalytically active ligand metal for the cofactor, while the structural moiety of the cofactor seems not to be impaired by the mutation. The subunit assembly of the nitrate reductase was found to be independent of the molybdenum content of the cofactor.  相似文献   

6.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

7.
Summary Two types of nitrate reductase-deficient mutant cell lines (nia and cnx) of Nicotiana tabacum have been used for in vitro reconstitution of NADH-nitrate reductase. The cnx mutants simultaneously lack NADH-,FADH2-, red benzyl viologen-nitrate reductase, and xanthine dehydrogenase activities, but retain the nitrate reductase-associated NADH-cytochrome c reductase activity. These mutants are interpreted to be defective in the molybdenum-containing cofactor necessary for nitrate reductase activity. In the nia lines xanthine dehydrogenase activity is unaffected, and the loss of NADH-nitrate reductase is accompanied by a loss of all partial activities of nitrate reductase, including NADH-cytochrome c reductase. When cnx cells (induced by nitrate) were homogenized together with nia cells (induced by nitrate or uninduced), NADH-nitrate reductase activity was detectable in the cell extract. No nitrate reductase was observed when the cnx mutants were homogenized together, or after cohomogenization of the nia mutants. Thus, the inactive nitrate reductase molecule formed in the cnx mutants has been complemented in vitro with the molybdenum-containing cofactor supplied by nia extracts, thus giving rise to NADH-nitrate reductase activity. This result gives additional support to the interpretation that the active nitrate reductase of Nicotiana tabacum is composed of at least the NADH-cytochrome c reductase moiety and a molybdenum-containing cofactor which is formed by the action of the cnx gene product(s).  相似文献   

8.
Summary In vitro complementation of the nitrate reductase-deficient barley mutant nar2a extracts with molybdenum cofactor from commercial xanthine oxidase resulted in reactivation of NADH: nitrate reductase activity. Maximum reactivation was achieved with 7.5 g/ml xanthine oxidase (final concentration), 10 mM glutathione (final concentration) and incubation for 30 min at room temperature (ca. 25°C). This in vitro complementation assay was used to determine the presence of functional apoprotein and molybdenum cofactor in 12 nitrate reductase-deficient barley mutants. Extracts of all nar1 alleles contained functional molybdenum cofactor (complemented with nar2a) but they lacked functional apoprotein (did not complement with molybdenum cofactor from xanthine oxidase). The nar2a, nar3a and nar3b extracts were able to donate functional apoprotein, but were poor sources of functional molybdenum cofactor. These data are in agreement with our previous assignment of nar1 to the barley NADH: nitrate reductase structural locus and nar2 and nar3 to molybdenum cofactor functions. Wild type cv. Steptoe barley seedlings grown in the absence of nitrate and lacking nitrate reductase activity contained low levels of molybdenum cofactor. Nitrate induction resulted in a several-fold increase in the measurable molybdenum cofactor levels that was correlated with the increase in nitrate reductase activity.Scientific Paper No. 6839. College of Agriculture Research Center, Washington State University, Pullman. Project Nos. 0430 and 0233. This work was supported in part by National Science Foundation Grant PCM 81-19096 and USDA Competitive Research Grant 82-CRCR-1-1112  相似文献   

9.
10.
E. Fernández  J. Cárdenas 《Planta》1981,153(3):254-257
Wild-type Chlamydomonas reinhardii cells have xanthine dehydrogenase activity when grown with nitrate, nitrite, urea, or amino acid media. Mutant strains 102, 104, and 307 of Chlamydomonas, lacking both xanthine dehydrogenase and nitrate reductase activities, were incapable of restoring the NADPH-nitrate reductase activity of the mutant nit-1 of Neurospora crassa, whereas wild type cells and mutants 203 and 305 had xanthine dehydrogenase and were able to reconstitute the nitrate reductase activity of nit-1 of Neurospora. Therefore, it is concluded that in Chlamydomonas a common cofactor is shared by xanthine dehydrogenase and nitrate reductase. Xanthine dehydrogenase is repressed by ammonia and seems to be inessential for growth of Chlamydomonas.  相似文献   

11.
The cnx- group of mutants of Aspergillus nidulans lacks xanthine dehydrogenase (xanthine: NAD+ oxidoreductase, EC 1.2.1.37) and nitrate reductase (EC 1.6.6.3) activities and are thought to be defective in the synthesis of a molybdenum-containing cofactor, 'cnx', common to xanthine dehydrogenase and nitrate reductase [Pateman, J.A., Rever, B.M., Cove, D.J. and Roberts, D.B. (1964) Nature (Lond.) 201, 58-60]. The cnx cofactor has a role in maintaining the aggregated multimeric structure of nitrate reductase [MacDonald, D.W., Cove, D.J. and Coddington, A. (1974) Mol. Gen. Genet. 128, 187-199]. We report here that, in cnx- mutants grown under conditions inducing xanthine dehydrogenase I, a species cross-reacting with antisera to the native enzyme and of half its molecular weight is present, together with cross-reacting molecules of similar molecular weight to the native enzyme. This suggests that the cnx cofactor has a role in maintaining the aggregated structure of xanthine dehydrogenase I. Both cross-reacting species are capable of passing reducing equivalents from NADH to a tetrazolium salt, showing that the cnx cofactor is not necessary for enzymic activity towards NADH.  相似文献   

12.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

13.
T. Borner  R. R. Mendel  J. Schiemann 《Planta》1986,169(2):202-207
The activities of nitrite reductase (EC 1.7.7.1) are 60–70% of wild-type activity in pigment-deficient leaves of the chloroplast-ribosomedeficient mutants albostrians (Hordeum vulgare) and iojap (Zea mays). The activity and apoprotein of nitrate reductase (EC 1.6.6.1.) are lacking in the barley mutant. Only very low activities of nitrate reductase can be extracted from leaves of the maize mutant. The molybdenum cofactor of nitrate reductase and xanthine dehydrogenase (EC 1.2.3.2) is present in maize and barley mutant plants. However, it is not inducible by nitrate in pigment-deficient leaves of albostrians. From these results we conclude: (i) Nitrite reductase (a chloroplast enzyme) is synthesized in the cytoplasm and does not need the presence of nitrate reductase for the induction and maintenance if its activity. (ii) The loss or low activity of nitrate reductase is a consequence of the inability of the mutants to accumulate the apoprotein of this enzyme. (iii) The chloroplasts influence the accumulation (i.e. most probably the synthesis) of the nonchloroplast enzyme, nitrate reductase. The accumulation of nitrate reductase needs a chloroplast factor which is not provided by mutant plastids blocked at an early stage of their development.Abbreviations CRM cross-reacting material - Mo-co molybdenum cofactor - NiR nitrite reductase - NR nitrate reductase  相似文献   

14.
Summary Thirty-nine chlorate resistant cell lines were isolated after plating ethylmethane sulphonate treated allodihaploid cells of Nicotiana tabacum cv. Xanthi on agar medium containing 20 mM chlorate. Thirty-two of these cell lines grew as well on nitrate medium as on amino acid medium and three other cell lines grew well on amino acid medium but poorly on nitrate medium. Four other cell lines, 042, P12, P31 and P47 which could grow on amino acid medium, but not on nitrate medium, were examined further. They lacked in vitro nitrate reductase activity but were able to accumulate nitrate. All lines possessed nitrite reductase activity. Lines 042, P12, and P31 had a cytochrome c reductase species which was the same size as the wild type nitrate reductase associated cytochrome c reductase species, whilst the cytochrome c reductase species in line P47 was slightly smaller. All four lines lacked xanthine dehydrogenase activity and neither nitrate reductase nor xanthine dehydrogenase activity was restored by subculture of the four lines into either nitrate medium or glutamine medium supplemented with 1 mM sodium molybdate. These four lines are different from other molybdenum cofactor defective cell lines so far described in N. tabacum and possess similar properties to certain other cnx mutants described in Aspergillus nidulans.  相似文献   

15.
Reconstitution of the apoprotein of the molybdoenzyme nitrate reductase in extracts of the Neurospora crassa mutant nit-1 with molybdenum cofactor released by denaturation of purified molybdoenzymes is efficient in the absence of exogenous MoO42? under defined conditions. Evidence is presented that this molybdate-independent reconstitution is due to transfer of intact Mo cofactor, a complex of Mo and molybdopterin (MPT), the organic constituent of the cofactor. This complex can be separated from denatured protein by gel filtration, and from excess MoO42? by reverse-phase HPLC. Sulfite oxidase, native xanthine dehydrogenase, and cyanolyzed xanthine dehydrogenase are equipotent Mo cofactor donors. Other well-studied inactive forms of xanthine dehydrogenase are also shown to be good cofactor sources. Using xanthine dehydrogenase specifically radiolabeled in the cyanolyzable sulfur, it is shown that this terminal ligand of Mo is rapidly removed from Mo cofactor under the conditions used for reconstitution.  相似文献   

16.
17.
Summary Further evidence supports the hypothesis that nitrate reductase and xanthine dehydrogenase are molybdo-enzymes inAspergillus nidulans, probably sharing a molybdenum-containing cofactor. This evidence includes (1) five-fold greater toxicity of tungstate on nitrate and hypoxanthine than on other nitrogen sources, (2) locus-specific molybdate reparability of both nitrate reductase and xanthine dehydrogenase at one (cnxE) of five (cnx) loci where mutation can result in pleiotropic loss of both enzyme activities, and (3) an additional class of mutants (molB) which are both molybdate resistant and partially defective in utilization of nitrate and hypoxanthine as nitrogen sources. Moreover, the phenotypes on molybdate-containing media of various mutants altered in the regulation of nitrate reductase synthesis and the ability of nitrate to protect against molybdate toxicity suggest that incorporation of molybdenum into nitrate reductase or into something having the same control properties as nitrate reductase can detoxify molybdate. However, mutations affecting regulation of xanthine dehydrogenase synthesis do not affect growth responses to molybdate. The properties of another class of molybdate resistance mutations (molA) suggest that there is another nitrate-inducible intracellular molybdate detoxification mechanism in addition to the one having identical control properties to nitrate reductase.  相似文献   

18.
A singular mutant strain from Chlamydomohas reinhardii defective in nitrate reductase has been characterized. Mutant 301 possesses an ammonia-repressible NAD(P)H-cytochrome c reductase with the same charge and size properties as the low molecular weight ammonia-repressible diaphorase present in the wild-type strain 6145c and is also able to reconstitute NAD(P)H-nitrate reductase activity by in vitro complementation with reduced benzyl viologen-nitrate reductase from mutant 305. Furthermore, a heat-labile costitutive molybdenum cofactor which is fuctionally active is also present in mutant 301. Mutant 301 has the two requirements exhibited by the active nitrate reductase complex from fungi, namely, NAD(P)H-cytochrome c reductase activity and molybdenum cofactor, but lacks NAD(P)H-nitrate reductase activity. This fact together with biochemical data presented from other C. reinhardii mutants strongly suggest a heteropolymeric model for the nitrate reductase complex of the alga.  相似文献   

19.
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to ∼50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号