首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell cycle stage of donor cells and the method of cell cycle synchronization are important factors influencing the success of somatic cell nuclear transfer. In this study, we examined the effects of serum starvation, culture to confluence, and treatment with chemical inhibitors (roscovitine, aphidicolin, and colchicine) on cell cycle characteristics of canine dermal fibroblast cells. The effect of the various methods of cell cycle synchronization was determined by flow cytometry. Short periods of serum starvation (24-72 h) increased (P<0.05) the proportion of cells at the G0/G1 phase (88.4-90.9%) as compared to the control group (73.6%). A similar increase in the percentage of G0/G1 (P<0.05) cells were obtained in the culture to confluency group (91.8%). Treatment with various concentrations of roscovitine did not increase the proportion of G0/G1 cells; conversely, at concentrations of 30 and 45 microM, it increased (P<0.05) the percentage of cells that underwent apoptosis. The use of aphidicolin led to increase percentages of cells at the S phase in a dose-dependent manner, without increasing apoptosis. Colchicine, at a concentration of 0.1 microg/mL, increased the proportion of cells at the G2/M phase (38.5%, P<0.05); conversely, it decreased the proportions of G0/G1 cells (51.4%, P<0.05). Concentrations of colchicines >0.1 microg/mL did not increase the percentage of G2/M phase cells. The effects of chemical inhibitors were fully reversible; their removal led to a rapid progression in the cell cycle. In conclusion, canine dermal fibroblasts were effectively synchronized at various stages of the cell cycle, which could have benefits for somatic cell nuclear transfer in this species.  相似文献   

2.
An important factor governing developmental rates of somatic cloned embryos is the phase of the cell cycle of donor nuclei. The aim of this experiment was to investigate the distribution of cell cycle phases in bovine cumulus and fibroblast cells cultured using routine treatment, and under cell cycle-arresting treatments. The highest percentages of cumulus cells in the G0 + G1 stage were observed in uncultured, frozen/thawed cells originating from immature oocytes (79.8 +/- 2.2%), fresh and frozen/thawed cells from in vitro matured oocytes (84.1 +/- 6.2 and 77.8 +/- 5.7%, respectively), and in cycling cells (72.7 +/- 16.3 and 78.4 +/- 11.2%, respectively for cumulus cells from immature and in vitro matured oocytes). Serum starvation of cumulus cultures markedly decreased percentages of cells in G0 + G1, and prolonged starvation significantly increased (P < 0.05) percentages of cells in G2 + M phase. Culture of cumulus cells to confluency did not increase percentages of cells in G0 + G1. Contrary to findings in cumulus cells, significantly higher percentages of cells in G0 + G1 were apparent when fibroblast cells were cultured to confluency or serum starved, and significantly increased (P < 0.01) as the starvation period was prolonged. It is concluded that for particular cell types specific strategies should be used to attain improvements in the efficiency of cloning procedures.  相似文献   

3.
Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells   总被引:14,自引:0,他引:14  
Normal development of nuclear transfer embryos is thought to be dependent on transferral of nuclei in G0 or G1 phases of the cell cycle. Therefore, we investigated the cell cycle characteristics of porcine fetal fibroblast cells cultured under a variety of cell cycle-arresting treatments. This was achieved by using flow cytometry to simultaneously measure cellular DNA and protein content, enabling the calculation of percentages of cells in G0, G1, S, and G2+M phases of the cell cycle. Cultures that were serum starved for 5 days contained higher (p < 0.05) percentages of G0+G1 (87.5 +/- 0. 7) and G0 cells alone (48.3 +/- 9.7) compared with rapidly cycling cultures (G0+G1: 74.1 +/- 3.0; G0: 2.8 +/- 1.2). Growth to confluency increased (p < 0.05) G0+G1 percentages (85.1 +/- 2.8) but did not increase G0 percentages (6.0 +/- 5.3) compared to those in cycling cultures. Separate assessment of small-, medium-, and large-sized cells showed that as the cell size decreased from large to small, percentages of cells in G0+G1 and G0 alone increased (p < 0.05). We found 95.2 +/- 0.3% and 72.2 +/- 12.0% of small serum-starved cells in G0+G1 and G0 alone, respectively. Cultures were also treated with cell cycle inhibitors. Treatment with dimethyl sulfoxide (1%) or colchicine (0.5 microM) increased percentages of cells in G0 (24.8 +/- 20.0) or G2+M (37.4 +/- 4.6), respectively. However, cells were only slightly responsive to mimosine treatment. A more complete understanding of the cell cycle of donor cells should lead to improvements in the efficiency of nuclear transfer procedures.  相似文献   

4.
The effects on normal rat fibroblasts of lead supplementation (as lead acetate) in the medium were examined. The amount of lead acetate ranged from 0.078 microM to 320 microM, at 14 concentrations. The normal level of lead in the medium was 0.060 microM, and the normal concentration of lead in the fibroblasts was 3.1 +/- 0.1 ng/10(7) cells: these represented the control conditions. On studying fibroblast proliferation and survival after incubation for 48 hours, a lead acetate dose-dependent inhibition of cell proliferation was observed, the results being shown to be significant by ANOVA (p < 0.01), and suggesting a significant dose-response relationship. Apoptosis, evaluated by quantifying cytoplasmic DNA fragments, differs significantly between the lead levels tested. The distribution in the cell cycle, evaluated by using a fluorescence-activated cell sorter, showed a dose-dependent accumulation of cells in the G0/G1 phase, with a compensatory decrease in the percentage of cells in the S phase. Moreover, the occurrence of a subdiploid peak confirmed that apoptosis was more evident when the medium was supplemented with lead acetate at concentrations of 5-20 microM. The inhibition of cell growth is probably due to a direct inhibition of cell proliferation.  相似文献   

5.
猪胎儿肾脏成纤维细胞体外培养体系的建立   总被引:3,自引:0,他引:3  
本研究旨在建立猪胎儿肾脏成纤维细胞体外培养体系,并探讨其作为猪体细胞克隆供体的可能性。使用组织块培养法从体长为10cm以上的猪胎儿分离得到猪胎儿肾脏成纤维细胞,绘制了生长曲线,鉴定了细胞类型并且进行了细胞周期同期化效果的研究。结果表明:该培养体系可以支持猪胎儿肾脏成纤维细胞的体外生长,单个细胞均为梭形细胞,抗波形蛋白免疫荧光染色显示为阳性,而抗角形蛋白免疫荧光染色为阴性,分离到的细胞为胎儿肾脏成纤维细胞。使用血清饥饿法和接触抑制法诱导细胞进入G0/G1期,并且分别比较两者同期化效率,结果显示:血清饥饿2d和4d的同期化效率差异不显著,但都比8d组的高(88.97%和87.69%比82.45%,P<0.05);接触抑制4d、6d组间同期化效率差异不显著,但都比0d组的高(85.56%和85.89%比81.82%,P<0.05)。本研究在国内首次分离得到猪胎儿肾脏成纤维细胞,已经在体外传代培养到32代,其同期化效果好,可以作为体细胞克隆供体。  相似文献   

6.
Yu YS  Sun XS  Jiang HN  Han Y  Zhao CB  Tan JH 《Theriogenology》2003,59(5-6):1277-1289
The effect of serum starvation and olomoucine treatment on the cell cycle and apoptosis of goat skin fibroblasts cultured in vitro is reported in this paper. The cells were obtained from the ear of a female goat 1.5 years of age. Analysis of cell cycle distribution by fluorescence-activated cell sorting (FACS) showed that 3.4, 60.8 and 15.1% of normally cycling cells were at G1, G0 and S phase, respectively. Serum starvation for 1, 3 and 5 days arrested 70.1, 70.2 and 83.4% cells, respectively, at G0/G1 phase. Seventy-eight percent of confluent cells were at G0/G1 stage, but in contrast to the serum starved group, this high percentage of G0/G1 cells was mainly associated with G1 cells. Of cells not deprived of serum, 73.6% were arrested at G1/G0 when treated with 100 microM olomoucine for 9 h compared to 85.5% of cells that had been starved of serum for 2 days (co-inhibition) (P<0.01). After co-inhibition, 45% of cells entered S phase when re-cultured in normal medium for 5 h, indicating that the inhibition was reversible. Under normal culture conditions, 1.2% of cells underwent apoptosis. Serum starvation for 1, 2, 3, 5 and 10 days caused apoptosis in 1.7, 3.9, 4.5, 11.7 and 90.3% of cells, respectively. Treatment with 100 microM olomoucine for 9h did not increase the number of apoptotic cells significantly (1.9%, P>0.05). When cells were co-inhibited, 4.1% of cells underwent apoptosis. In conclusion, although serum withdrawal for 5 days or more effectively arrested cells at G0/G1 stages, it increased apoptosis of cells significantly. However, co-inhibition by serum withdrawal and olomoucine treatment was found to be an appropriate treatment to obtain more healthy G0/G1 cells based on the low percentage of apoptotic cells after treatment.  相似文献   

7.
8.
The success of somatic cell nuclear transfer depends critically on the cell cycle stage of the donor nucleus and the recipient cytoplast. Karyoplasts in the G0 or G1 stages are considered to be the most suitable for nuclear transfer. In the present study, we used a reversible cell cycle inhibitor, mimosine, to synchronize porcine granulosa cells (GCs) in G1 phase of the cell cycle. Porcine GCs were obtained from 3 to 5mm ovarian follicles of slaughtered gilts. The effect of mimosine on the proliferation, DNA synthesis and cell cycle stage of cultured cells was examined by incorporation of radiochemical 3H-thymidine, immunocytochemical detection of incorporated thymidine analogue 5-bromo-2-deoxyuridine (BrdU) and flow cytometry analyses. Mimosine treatment of pig GCs for 24h resulted in proliferation arrest in vitro. Treatment with 0.5mM mimosine significantly (P<0.05) inhibited 3H-thymidine incorporation after 24h of culture (4.6% +/- 0.1) and after 24h of culture in serum deprived medium (41.3% +/- 3.8), in comparison to controls (100%). Inhibition of DNA synthesis was further confirmed by immunocytochemical and flow cytometry analyses. Compared with controls (78.2%), mimosine treatment for 24h increased the proportion of G0/G1 cells in the culture (85.7%) more effectively than serum starvation (SS; 81.2%). Mimosine-caused G1 arrest of porcine GCs was fully reversible and cells continued to proliferate after removing the drug, especially when they were stimulated by EGF.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) present in ambient air are considered as potential human carcinogens, but the detailed mechanism of action is still unknown. Our aim was to study the in vitro effect of exposure to dibenzo[a,l]pyrene (DB[a,l]P), the most potent carcinogenic PAH ever tested, and benzo[a]pyrene (B[a]P) in a normal human diploid lung fibroblast cells (HEL) using multiple endpoints. DNA adduct levels were measured by 32P-postlabelling, the expression of p53 and p21(WAF1) proteins by western blotting and the cell cycle distribution by flow cytometry. For both PAHs, the DNA adduct formation was proportional to the time of exposure and dependent on the stage of cell growth in culture. DNA binding was detectable even at the lowest concentration used (24h exposure, 0.01 microM for both PAHs). The highest DNA adduct levels were observed after 24h of exposure in near-confluent cells (>90% of cells at G0/G1 phase), but DNA damage induced by DB[a,l]P was approximately 8-10 times higher at a concentration one order of magnitude lower as compared with B[a]P (for B[a]P at 1 microM and for DB[a,l]P at 0.1 microM: 237+/-107 and 2360+/-798 adducts/10(8) nucleotides, respectively). The induction of p53 and p21(WAF1) protein occurred subsequent to the induction of DNA adducts. The DNA adduct levels correlated with both p53 (R=0.832, P<0.001 and R=0.859, P<0.001, for DB[a,l]P and B[a]P, respectively) and p21(WAF1) levels (R=0.808, P<0.001 and R=0.797, P=0.001, for DB[a,l]P and B[a]P, respectively), regardless of the PAH exposure and the phase of cell growth. The results showed that a detectable increase of p53 and p21(WAF1) proteins (> or = 1.5-fold as compared with controls) requires a minimal DNA adduct level of approximately 200-250 adducts/10(8) nucleotides for both PAHs tested and suggest that the level of adducts rather than their structure triggers the p53 and p21(WAF1) responses. The cell cycle was altered after 12-16h of treatment, and after 24h of exposure to 0.1 microM DB[a,l]P in growing cells, there was approximately 24% increase in S phase cells accompanied by a decrease in G1 and G2/mitosis (G2/M) cells. Cell treatment with 1.0 microM B[a]P resulted in more subtle alterations. We conclude that DB[a,l]P, and to a lesser degree B[a]P, are able to induce DNA adducts as well as p53 and p21(WAF1) without eliciting G1 or G2/M arrests but rather an S phase delay/arrest. Whether the S phase delay observed in our study is beneficial for the survival of the cells remains to be further established.  相似文献   

10.
Cell cycle analysis of cultured porcine mammary cells   总被引:5,自引:0,他引:5  
Prather RS  Boquest AC  Day BN 《Cloning》1999,1(1):17-24
One of the major points of debate in determining the effectiveness of nuclear transfer technology has been the phase of the cell cycle of the donor cell at the time of nuclear transfer. Here, a primary mammary cell line has been isolated and various treatments for synchronization of the cell cycle have been tested. The cells were then simultaneously stained for DNA content and protein content and the percentages of cells in G1, G0, S, and G2 + M were estimated. In the first experiment, cells were either cycling, grown to confluence, or serum-starved for 5 days. Serum starvation increased (p < 0.05) the percentage of cells in G0 compared to confluent or cycling cells from 3% to 8% to 22%. By using forward scatter to determine the size of the cells it was determined that if small cells (7-15 microm) were selected from the serum-starved group 43.9% will be in G(0) as compared to 4.5% of cycling cells and 9.9% of confluent cells. Dimethyl sulfoxide (DMSO) treatment (0%, 0.5%, or 1.0%) for 72 hours (shown to synchronize some cell types in G0) had no effect on the percentage of cells in G0, G1, S, or G2 + M. Treatment with mimosine (0 microM, 0.4 microM, 0.8 microM or 1.2 microM), a compound that should synchronize the cells in G1, increased (p < 0.05) the percentage of cells in G1 from 66.7% (0 microM mimosine) to 79.0% to 82.0%. Finally, treatment with colchicine for 24 hours (shown to synchronize some cell types in G2 + M) increased (p < 0.05) the percentage of cells in G2 + M (0 microM colchicine) from 13.3% to 27.2% to 31.6%. It is concluded that many cell cycle synchronization techniques are effective in porcine mammary cell lines, but none of the techniques are 100% effective. Such results should help elucidate the mechanisms involved in nuclear transfer.  相似文献   

11.
Ten structurally related 2'-oxygenated chalcone derivatives, bearing either hydroxy and/or methoxy substituents on the A and B rings, were synthesized through Claisen-Schmidt condensation. The synthesis procedure was relatively easy and had an acceptable yield. The in vitro cytotoxicities of these compounds against the human tumor cells such as Jurkat, U937 cells, and normal cells PHA stimulated PBMCs were investigated. Among those, compounds 1 (IC50 = 2.5 microM), 2 (1.7 microM), and 8 (3.2 microM) showed potent inhibitory activity toward Jurkat cell line. In parallel, compounds 1 (6.7 microM), 2 (1.5 microM), and 10 (5.3 microM) showed the highest activity against U937 cell line. However, the chalcones also inhibit the PHA stimulated PBMCs cells, but the IC50 values were relatively high when compared to the tumor cell line values. Studies were also on the effect of synthesized chalcones on the cell cycle phase distribution. In Jurkat cell line, compounds 7 and 9 showed the highest activity and the most striking effect in reduction of the percentage of cells in the S phase, which was associated with an increase of cells in G2/M phase. In U937 cell line, compound 3 increased the proportion of cells in the G0/G1 phase and reduced the proportion in S phase. In contrast, compounds 1, 9, and 10 showed a decrease effect on the percentage of cells in S phase and an increase effect on the percentage of cells in the G2/M phase of the cell cycle. Whereas in the case of PHA stimulated PBMCs, compounds 1, 4, 8, and 10 increased the percentage of cells in G2/M phase, which was associated with a decrease effect in the S phase of the cell cycle.  相似文献   

12.
Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells.  相似文献   

13.
Previous studies have shown that high dose 17beta-estradiol (10 (-5) M) has a G2/M blocking effect in SW-13 human adrenal carcinoma cultures and strongly enhances apoptosis. To examine the differential effects of estrogen alpha and beta-receptors in this system, we incubated SW-13 cells with specific alpha- and beta-estrogen receptor agonists, PPT [4,4',4'-(propyl-[ (1)H]-pyrazole-1,3,5-triyl) trisphenol] and DPN [2,3-bis (4-hydroxyphenyl) propionitrile], respectively (each at 10 (-5) M). Flow cytometry was used to analyze the percentages of cells in various phases of the cell cycle [sub-G1 (apoptosis), G1, S, and G2/M] in each experimental condition. Exposure to 17 beta-estradiol for 48 hours increased apoptosis more than 5-fold (from 3.6+/-0.5 to 20+/-2.2% of cells; p<0.01). The alpha-estrogen agonist PPT had a similar effect, increasing apoptosis to 22+/-1.7% (p<0.01), but the beta-agonist DPN caused no change (3.6+/-0.5 vs. 3.9+/-0.8%). While estrogen and the alpha-estrogen agonist decrease apoptosis in this system, both of these compounds decreased the percentage of cells in G1 (from 59+/-1.4% for control to 34+/-2.3% for estrogen and 40+/-2.0% for PPT; p<0.01 for both agents relative to control); the beta-agonist again had no effect. Estrogen was also found to block the cell cycle in G2/M, increasing it from 15+/-0.4 to 21+/-1.0% of cells (p<0.01), but neither the alpha- nor beta-estrogen agonists had any effect at this point in the cell cycle, indicating that the influence of estrogen was not likely to be either alpha- or beta-receptor mediated. There was no apparent effect of any of these agents on DNA synthesis, as indicated by unchanged percentages of cells in S phase. These studies suggest that induction of apoptosis by estrogen in SW-13 human adrenal cortical carcinoma cultures is mediated by the alpha-receptor, but the G2/M blocking effect of estrogen is not likely to be related to either alpha or beta mechanisms.  相似文献   

14.
目的:探讨人参皂苷单体Rh2对人鼻咽癌CNE-2S细胞增殖及凋亡的影响。方法:将生长在对数期的人鼻咽癌CNE-2S细胞分为空白对照组、阴性对照组和实验组。对照组常规培养,阴性对照组采用含有DMSO的培养液培养,实验组在对照组细胞的基础上加入不同浓度人参皂苷单体Rh2处理。采用MTT法测定细胞增殖,PI单染流式细胞术分析各时期细胞所占百分比,Annexin V-PI双染流式细胞仪检测细胞的凋亡情况。结果:与阴性对照组相比,实验组各浓度下的Rh2对CNE-2S细胞均具有显著的增殖抑制作用(P0.05),且随着Rh2浓度的增加而呈现增强的趋势,其中浓度为12.5 mg·L-1 Rh2增值抑制率最低,浓度为100 mg·L-1Rh2增值抑制率最高。不同浓度人参皂苷单体Rh2 G0/G1期细胞分布显著高于阴性对照组(P0.001),且G2/M、S期细胞比例显著低于阴性对照组(P0.01),且随着人参皂苷单体Rh2浓度的增加作用呈现增强的趋势(P0.05);不同浓度的Rh2单体作用24h,CNE-2S细胞早期、晚期凋亡率及总凋亡率均较阴性对照组明显增高(P0.001),并且在Rh2单体浓度为100 mg·L-1时,凋亡率最高。结论:人参皂苷单体Rh2对人鼻咽癌CNE-2S细胞增殖及凋亡具有显著的影响,并且可能对单体Rh2的浓度存在依懒性。  相似文献   

15.
刘佳  杨晓彤  杨庆尧 《生物磁学》2011,(20):3826-3829
目的:探究云芝糖)Ik(PSP)对人急性淋巴母细胞白血病Molt-4细胞周期的影响。方法:采用流式细胞术BrdU/DNA双染法获得各时相细胞分布状况和细胞周期的动力学参数。结果:0.1mg/mlPSP处理12h后,G2/M期细胞百分比由对照组的11.09%减少至3.69%。DNA合成时间由12.10h延长至108.40h。24h处理组中,S期细胞百分比由对照组的43.29%增加至67.26%,而G0/G1期和G2/M期细胞百分比均减少,G0/G1期细胞百分比由对照组的37.47%减少至27.43%,G2/M期细胞百分比由对照组的19.24%降低至5.31%。DNA合成时间更是由11.95h延长至114.52h。结论:PSP对人急性淋巴母细胞白血病Molt-4细胞周期的阻滞作用在于S期.该作用与DNA合成抑制有关。  相似文献   

16.
Cadmium (Cd) is an important industrial and environmental pollutant, and the kidney is the primary organ to be affected. To elucidate the effects of Cd on cell proliferation, an epithelial cell line (A6) originally derived from the distal part of the Xenopus laevis kidney was cultured in media containing 10% fetal bovine serum. The effects of Cd (added as CdCl(2)) on cellular growth and differentiation from single cells to confluent epithelia were investigated by visual inspection and by measurement of the degree to which living cells covered a unit area. Over a concentration range from 5 to 50 microM, Cd did not affect the settling and adherence of single cells to the bottom of the culture well. The addition of 5 microM Cd for 4 days did not affect the ability of the A6 cells to develop confluent epithelia, measured as the area covered by adherent living epithelial cells (99 +/- 4% of the control value). However, 10 microM Cd did effectively inhibit development of confluent epithelia to 13 +/- 5% compared to control. Visual inspection of adherent cells exposed to 50 microM Cd for 7 days revealed no increase in cell number or in cell death, which indicated the induction of cell cycle arrest. Flow cytometric analysis showed that treatment of cells with Cd (0.4mM) for 24 hours induced a significant increase in the proportion of G1 phase cells from 58.6 +/- 3.9 to 80.6 +/- 3.7%, and a corresponding reduction in the proportion of cells in both the S and G2 phases from 24.0 +/- 3.6 to 13.4 +/- 3.3% and 17.2 +/- 1.7 to 5.8 +/- 2.1%, respectively. This study showed that Cd stopped cell proliferation in a very narrow concentration range, between 5 and 10 microM, and cell cycle analysis indicated that Cd arrested the cells in the G1 phase of the cell cycle.  相似文献   

17.
Introduction of human chromosome 6 into malignant melanoma cell line UACC903 resulted in generation of the chromosome 6-mediated suppressed cell subline UACC903(+6) that displays attenuated growth rate, anchorage-dependency, and reduced tumorigenicity. We have showed that overexpression of a chromosome 6-encoded tumor suppressor gene led to partial suppression to UACC903 cell growth. We now describe the differences in apoptosis and cell cycle between UACC903 and UACC903(+6) before and after UV irradiation. MTT assay revealed 86.92+/-8.24% of UACC903 cells viable, significantly (p<0.01) higher than 48.76+/-5.31% of UACC903(+6), at 24 hr after 254-nm UV irradiation (40 J/M(2)). Before UV treatment, flow cytometry analysis revealed 6.06+/-0.20% apoptosis in UACC903, significantly (p=0.01) lower than 6.67+/-0.15% in UACC903(+6). The G0/G1, S and G2/M phase cells of UACC903 were, respectively, 54.10+/-0.59%, 22.31+/-0.50% and 16.85+/-0.25%, all significantly (p<0.01) different from the corresponding percentages (58.82+/-0.35%, 20.48+/-0.05%, and 13.17+/-0.45%) of UACC903(+6). After the UV treatment, UACC903 cells in apoptosis, G0/G1, S, and G2/M became 12.59+/-0.17%, 38.90+/-0.67%, 19.74+/-0.70%, and 27.01+/-0.66%, respectively, while UACC903(+6) cells were 24.16+/-0.48%, 37.97+/-0.62%, 19.20+/-0.52%, and 15.69+/-0.14%. TUNEL assay revealed 2.31+/-0.62% apoptosis in UACC903, significantly (p<0.01) lower than 9.60+/-1.14% of UACC903(+6), and a linear and exponential increase of apoptosis, respectively, in response to the UV treatment. These results indicate that UACC903(+6) cells have a greater tendency to undergo apoptosis and are thus much more sensitive to UV irradiation. Our findings further suggest a novel mechanism for chromosome 6-mediated suppression of tumorigenesis and metastasis, i.e., through increased cell death.  相似文献   

18.
In order to investigate the changes of N-acetylglucosaminyl transferase (GlcNAc-T) III, IV and V in cell cycle, the synchronization of 7721 human hepatocellular carcinoma cells was performed using serum hunger method. The percentages of cells in different phases during cell cycle were measured by flow cytometry (FCM) and the cell cycle was checked by determining the activity of cellular p34cdc2 kinase. It was found that the activities of GlcNAc-T III increased in G0/G1 cell peak phase and had correlation with the cell percentage of G0/G1 phase (r = 0.760, P < 0.05), while GlcNAc-T V showed the highest activity when G2/M cells were most abundant and had an apparent correlation with the cell percentage of G2/M phase (r = 0.868, P < 0.001). The changes of GlcNAc-T IV activity seemed not related to the cell cycle. The changes in opposite directions of relative activities (percentage of total GlcNAc-T III, IV, V) of GlcNAc-T III and GlcNAc-T V were observed during cell cycle (r = -0.951, P < 0.001), suggesting that these two enzymes might be regulated differently and functioned oppositely in the cells: GlcNAc-T V may be related to the proliferation of 7721 cells, while GlcNAc-T III may be related to the non-mitotic silence phase of the cells, or, it may be a factor against proliferation. Immunohistochemical results showed that the protein content of GlcNAc-T V was not significantly changed during cell cycle, and had no correlation with the activity of GlcNAc-T V, suggesting that the changes of GlcNAc-T V activity in cell cycle might not be resulted from the alteration of enzyme protein synthesis. The correlation between the activities of GlcNAc-T V and p34cdc2 kinase (r = 0.752, P < 0.05) was observed in cell cycle, implicating that GlcNAc-T V might possibly be regulated by p34cdc2 kinase.  相似文献   

19.
为研究siRNA干扰瘢痕疙瘩成纤维细胞cyclin D1基因表达,对瘢痕疙瘩成纤维细胞的增殖、细胞周期和G1期调控的影响,构建了靶向cyclin D1的siRNA表达质粒.利用LipofecmmineTM2000转染体外培养的瘢痕疙瘩成纤维细胞,应用荧光定量PCR、RT-PCR检测cyclin D1 mRNA的干扰效果,应用MTT法、流式细胞仪检测细胞增殖和细胞周期的变化,应用免疫组织化学染色检测成纤维细胞中cyclin D1、CDK4、P16、pRb蛋白表达的影响.主要结果如F:a.靶向cyclin D1的特异性siRNA序列可以高效地抑制成纤维细胞cyclin D1基因表达,对照组与实验组在mRNA水平其表达抑制率分别为63.68%和92.83%(P<0.01);b.可以显著抑制瘢痕疙瘩成纤维细胞的增殖,改变细胞周期分布,G0/G1期细胞比例显著高于各对照组(P<0.05),细胞分裂被阻滞;c.免疫组化染色发现,转染72 h后,过表达的cyclin D1、CDK4和pRb蛋白,在瘢痕疙瘩成纤维细胞中均出现了不同程度的表达下调,而低表达的P16则呈上调表现.由上述结果可见,构建的靶向cyclin D1的RNAi表达质粒,可有效地抑制瘢痕疙瘩成纤维细胞cyclin D1基因表达,通过改变Gl期相关周期蛋白的水平,影响G1/S期的进程,显著地抑制成纤维细胞的增殖.  相似文献   

20.
Magnolol, a hydroxylated biphenyl compound isolated from the Chinese herb Hou p'u of Magnolia officinalis, has been reported to have anti-cancer activity. In the present study, magnolol at very low concentrations of 3-10 microM inhibited DNA synthesis and decreased cell number in cultured human cancer cells (COLO-205 and Hep-G2) in a dose-dependent manner, but not in human untransformed cells such as keratinocytes, fibroblasts, and human umbilical vein endothelial cells (HUVEC). Magnolol was not cytotoxic at these concentrations and this indicates that it may have an inhibitory effect on cell proliferation in the subcultured cancer cell lines. [(3)H] thymidine incorporation and flow cytometry analyses revealed that magnolol treatment decreased DNA synthesis and arrested the cells at the G0/G1 phase of the cell cycle. Moreover, the magnolol-induced cell cycle arrest occurred when the cyclin-CDK system was inhibited, just as p21 protein expression was augmented. When magnolol concentration was increased to 100 microM, apoptosis was observed in COLO-205 and Hep-G2 cells, but not in cultured human fibroblasts and HUVEC. COLO-205 cells implanted subcutaneously in nude mice formed solid tumors; subsequent daily i.p.-injections of magnolol led to profound regression of these tumors of up to 85%. In these tumors, an increase in the expression of p21 protein level and the occurrence of apoptosis were observed. These findings demonstrate for the first time that magnolol can inhibit the proliferation of tumor cells in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号