首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
The synthesis of a novel sterically congested tetraorganotin compound, (4-tert-butyl-2,6-dimesitylphenyl)trimethylstannane (1), is reported and its reactivity with special focus on transmetalation studied. The reaction of compound 1 with reagents such as HgCl2, BiCl3 and HOTf gave (4-tert-butyl-2,6-dimesitylphenyl)dimethyltin chloride (2) and (4-tert-butyl-2,6-dimesitylphenyl)dimethyltin triflate (3), respectively, as a result of selective tin-methyl bond cleavage. Less bulky aryltrimethyltin derivatives react with BiCl3 to give both tin-methyl and tin-aryl bond cleavage. Hydrolysis of compound 3 proceeds slowly to give bis-(4-tert-butyl-2,6-dimesitylphenyl)dimethyl stannoxane (5) via the intermediate (4-tert-butyl-2,6-dimesitylphenyl)dimethyltin hydroxide (4). All terphenyldimethyltin derivatives that were characterized by single crystal X-ray diffraction analysis show C-H?π interactions. Based on these results, the optimum C-H?π distance (C?centroidaryl distance) is suggested to be in the range 3.4 and 3.5 Å.  相似文献   

2.
Novel upper-rim modified tetraphosphinocalix[4]arenes (5a-b) adopting 1,3-alternate conformation have been synthesized. Reaction of 5,11,17,23-tetrachloromethyl-25,26,27,28-tetrahydroxycalix[4]arene (1) with Ph2POEt gave 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrahydroxycalix[4]arene (2). Tetra-O-substitution of 2 with n-propyl iodide or benzyl bromide in the presence of K2CO3 carried out to afford 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrapropoxy-(3a) or -benzyloxycalix[4]arene (3b), whereas di-O-substituted calix[4]arene, 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4), was obtained exclusively when Na2CO3 was used as base. Reduction of 3a-b with PhSiHCl2 afforded 5,11,17,23-tetrakis(diphosphinomethyl)-25,26,27,28-tetrapropoxy-(5a) and -tetrabenzyloxycalix[4]arene (5b). 1H and 13C NMR analysis reveals that the phosphines (5a-b) and the tetra-O-substituted phosphine oxides (3a-b) adopt 1,3-alternate conformation, while the parent tetrahydroxy-(2) and the di-O-propylated phosphine oxide (4) adopt cone-conformation. The X-ray structure indicates that the calix[4]arene moieties in 4 a pinched-cone conformation in solid state. Complexation of the phosphine ligand (5a) with [RuCl2(p-cymene)]2 affords the tetranuclear complexes, [{RuCl2(p-cymene)}2 · 5a] (6), as 1,3-alternate conformer.  相似文献   

3.
Silver(I) halides react with tri(p-tolyl)phosphine (tptp, C21H21P) in MeOH/MeCN solutions in 1:1 or 1:3 molar ratios to give complexes of formulae {[AgCl(tptp)]4} (1) or [AgX(tptp)3] (X = Cl (2), Br (3), I (4)), respectively. The complexes were characterized by elemental analyses, and FT-IR far-IR, FT-Raman, TG and 1H, 13C, 31P NMR spectroscopic techniques. Crystal structures of complexes 2-4 were determined by X-ray diffraction at room temperature (rt). The crystal structure of 1 and 4 was also determined at 100(1) and 140(2) K (lt), respectively. In complex 1 four μ3-Cl ions are bonded with four Ag(I) ions forming a cubane while the coordination sphere of silver(I) ions is completed by one P atom from a terminal tri(p-tolyl)phosphine ligand. In complexes 2-3 one terminal halogen and three P atoms from phosphine ligands form a tetrahedral arrangement around the metal ion. Complexes 1-4 were tested for in vitro cytostatic activity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis and against murine leukemia (L1210) and human T-lymphocyte (Molt4/C8 and CEM) cells. The silver(I) complexes 1-4 show strong activity.  相似文献   

4.
Reaction of HgCl2 with trans-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine (L1) and cis-(±)-(phenyl(2,4,5-tri(pyridin-2-yl)-4,5-dihydroimidazol-1- yl)methanone (L2) gives mononuclear complexes, 1 and 2. In these complexes L1 and L2 behave as tridentate and bidentate chelating ligands, giving distorted trigonal bipyramidal and tetrahedral coordination geometries, respectively. X-ray diffraction studies revealed a series of N-H?Cl, C-H?Cl, C-H?N and C-H?π interactions in 1 giving a 3D network, and N-H?Cl, C-H?Cl, C-H?π and π?π interactions in 2 giving a 2D network in the crystal lattice. Since both ligands should have a similar binding capacity to the mercury ions, the variations observed for coordination number and geometry should be a consequence of supramolecular stabilizing effects.  相似文献   

5.
We herein describe the synthesis and characterization of a series of homoleptic, Ru(II) complexes bearing peripheral carboxylic acid functionality based upon the novel ligand 4′-(4-carboxyphenyl)-4,4″-di-(tert-butyl)tpy (L1), as well as 4′-(4-carboxyphenyl)tpy (L2) and 4′-(carboxy)tpy (L3) (where tpy = 2,2′: 6′,2″-terpyridine). Inspection of the metal-based oxidations (E1/2 = 1.22-1.42 V) indicates an anodic shift (∼0.2 V) for (L3)2Ru2+ (3b) (E1/2 = 1.40 V) relative to (L2)2Ru2+ (2b) (E1/2 = 1.22 V). The metal-based oxidation (E1/2 = 1.22 V) and ligand-based reductions (E1/2 = −1.25 to −1.52 V) of (L1)2Ru2+ (1) are essentially invariant relative to those of the structural analogue 2b (PF6)2, which suggests no significant electronic effect caused by the tert-butyl groups. This is supported by invariance in the metal-to-ligand charge transfer bands in both the electronic absorption (494-489 nm) and emission spectra (654-652 nm). However, contrary to 2b, complex 1 is both very soluble and exhibits a highly porous solid-state structure with internal cavity dimensions of 15 Å × 14 Å due to the preclusion of inter-annular interactions by the bulky tert-butyl substituents.  相似文献   

6.
Two nitrogen and sulfur containing ligands, 1-methyl-4-((4-methylimidazol-5-yl)methylthio)benzene (NS-mim) (1) and 1-methyl-4-(2-pyridylmethylthio)benzene (NS-mpy) (2) were synthesized and a series of their Cu(II) complexes, 3-10, prepared. The imidazole-containing complexes (3-6) have the form [Cu(NS-mim)2(solvent)2](X)2 where X = ClO4, BF4and [Cu(NS-mim)2(Y)2] where Y = Cl or Br and the pyridine-containing complexes (7-10) have the form [Cu(NS-mpy)2]X2 (where X = ClO4, BF4) and [Cu2(NS-mpy)2Y4] (where Y = Cl or Br). These complexes were characterized by a combination of elemental analysis, FAB-MS and electrochemistry. The X-ray structure of the imidazole-containing [Cu(NS-mim)2(DMF)2](ClO4)2 (3) was determined and it showed the copper(II) coordinated only by the nitrogen donors while the sulfurs remain uncoordinated. In comparison, the X-ray structure of the pyridine-containing [Cu2(NS-mpy)2(Cl)4] (9) shows a dinuclear copper(II) complex with the nitrogens and the sulfurs coordinated along with a terminal chloride and two μ-chloro atoms bridging the coppers. Cyclic voltammetry studies indicated that the complexes undergo quasi-reversible one-electron reductions in acetonitrile at potentials between 0.31 and 0.51 V versus SCE. The complexes were found to be active for the oxidation of di-tert-butyl catechol (DTBC) with the rate dependent on the ligand and the counterion present.  相似文献   

7.
In our efforts to investigate the relationships between the structures of ligands and their complexes, two structurally related ligands, 1-(2-pyridylmethyl)-1H-benzimidazole (L1) and 1-(4-pyridylmethyl)-1H-benzimidazole (L2), and their four complexes, [Zn(L1)2Cl2] (1), [Hg(L1)Br2] (2), {[Zn(L2)Cl2](CH3CN)} (3) and [Hg(L2)Br2]2(CH3CN)2 (4) were synthesized and structurally characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction analysis. Structural analyses show that 1 has a mononuclear structure, and 2 and 3 both take 1D structure. While 4 takes a dinuclear structure. 1, 2 and 4 were further linked into higher-dimensional supramolecular networks by weak interactions, such as C-H?Cl and C-H?Br H-bonding, C-H?π, and π?π stacking interactions. The structural differences of 1-4 may be attributed to the difference of the spatial positions of the terminal N donor atoms in the pendant pyridyl groups in L1 and L2, in which the pyridine rings may act as the directing group for coordination and the benzimidazole rings act as the directing group for π?π stacking and C-H?π interactions. The luminescent properties of the corresponding complexes and ligands have been further investigated.  相似文献   

8.
The dinuclear arene ruthenium complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}]2 (1) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}]2 (2) have been obtained by dehydrogenation of the corresponding cyclohexadiene derivative with ruthenium chloride hydrate. The single-crystal X-ray structure analysis of 2 shows the arene ligands to be involved in slipped-parallel π-π stacking interactions with neighbouring molecules, thus forming infinite chains along the b-axis. The dinuclear complexes 1 and 2 react with two equivalents of triphenylphosphine (PPh3) to give in excellent yield the corresponding mononuclear phosphine complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}(PPh3)] (3) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}(PPh3)] (4), respectively. The single-crystal X-ray structure analysis of 4 reveals the formation of a dimer through two C-H?Cl interactions in the solid state.  相似文献   

9.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

10.
Treatment of 7,8-benzo[h]quinoline (bhq-H, 1) and 10-methyl benzo[h]quinoline (bhq-Me, 3) with [Rh(C2H4)2(THF)2][BF4] resulted in double C-H activation of aliphatic and aromatic C-H bonds, yielding the Rh(III) complexes 4 and 5, respectively. The structures of 4 and 5 were revealed by X-ray diffraction. The reaction of 1 with two other slightly different rhodium precursors, [Rh(olefin)n(THF)2][BF4] (COE (n = 2), COD (n = 1)), led to completely different products, a dinuclear complex 7 and a trinuclear complex 6, respectively, which were characterized by X-ray diffraction. Complex 6 exhibits a rare linear Rh-Rh-Rh structure. Utilizing excess of 1 with [Rh(COD)(THF)2][BF4] led to the formation of a new product 8 with no C-H bond activation taking place. Additional C-H activation products of 1, cationic and neutral, in the presence of PiPr3 (9a, 9b and 10) are also presented.  相似文献   

11.
From the reaction of tert-butyl lithium or n-butyl lithium with N-methylpyrrole (1a), furan (1b) or 2-bromo-thiophen (1c), 2-N-methylpyrrolyl lithium (2a), 2-furyl lithium (2b) or 2-thiophenyl lithium (2c), respectively, was obtained. When reacted with 6-(2-N-methylpyrrolyl) fulvene (3a), 6-(2-furyl) fulvene (3b) or 6-(2-thiophenyl) fulvene (3c), the corresponding lithiated intermediates were formed (4a-c). Titanocenes (5a-c) were obtained through transmetallation with titanium tetrachloride. When these titanocenes were tested against pig kidney epithelial (LLC-PK) cells, inhibitory concentrations (IC50) of 32 μM, 140 μM, and 240 μM, respectively, were observed. These values represent improved cytotoxicity against LLC-PK, compared to their ansa-analogues.  相似文献   

12.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

13.
Copper phosphates, [Cu(dtbp)2(pzet)2]·H2O (1) and [Cu(dtbp)2(pyme)2] (2), as well as copper phosphinate, [Cu(dppi)2(pyet)2] (3) have been synthesized by the reaction of copper acetate with di-tert-butyl phosphate (dtbp) or diphenyl phosphinate (dppi) in the presence of pyridine base having hydroxyl group, namely, 3,5-dimethylpyrazole-2-ethanol (pzet) or 2-(hydroxymethyl)pyridine (pyme) or 2-(2-hydroxyethyl)pyridine (pyet). Single crystal X-ray diffraction studies reveal that copper ion in all the three complexes is bonded to two phosphoryl ions (P(O)O) and two pyridine co-ligands. The crystal structure of 1 reveals that the hydroxyl group of the CH2CH2OH moiety of pzet ligand exhibits a positional disorder between the non-bonding position and the bonding position with respect to the central copper ion along the Jahn-Teller axis. Hence, the structure of 1 can be considered to exhibit both ‘square-planar’ and ‘octahedral’ coordination geometries simultaneously for the copper ion in the same complex. A similar situation for the -OH groups has not been observed in the complexes 2 and 3 and hence the coordination geometry around the copper ion is axially elongated octahedron.  相似文献   

14.
Zinc(II) complexes of N3O-donor tripodal ligands, 2,4-di(tert-butyl)-6-{[bis(2-pyridyl)methyl]aminomethyl}phenol (HtbuL), 2,4-di(tert-butyl)-6-{[(6-methyl-2-pyridyl)methyl]-(2-pyridyl)methylaminomethyl}phenol (HtbuLMepy), and 2,4-di(tert-butyl)-6-{[bis(6-methyl-2-pyridyl)methyl]aminomethyl}phenol (HtbuL(Mepy)2), [Zn(tbuL)Cl] · CH3OH (1), [Zn(tbuLMepy)Cl] (2), and [Zn(tbuL(Mepy)2)Cl] (3), respectively, were prepared and structurally characterized by the X-ray diffraction method. All the complexes were found to have a mononuclear structure with a coordinated phenolate moiety, the geometry of the Zn(II) center being 5-coordinate trigonal-bipyramidal. The Zn(II) binding ability of the ligands with and without 6-methyl-2-pyridylmethyl moieties was evaluated for similar ligands, which lacked the t-butyl groups at the 2- and 4-positions of the phenol moiety, by the stability constants determined by potentiometric titration at 25 °C (I = 0.1 M (KNO3)). The stability of the complexes was found to be in the order L > LMepy > L(Mepy)2, reflecting the steric hindrance of the 6-methyl group of the pyridine ring. Complexes 1, 2, and 3 were converted to the phenoxyl radicals upon oxidation with Ce(IV), giving a phenoxyl radical π-π∗ transition band at 394-407 nm. ESR and resonance Raman spectra established that the radical species had a Zn(II)-phenoxyl radical bond. The cyclic voltammograms showed similar quasi-reversible redox waves with E1/2 = 0.68, 0.67, and 0.63 V (versus Ag/AgCl) for 1, 2, and 3, respectively, corresponding to the formation of the phenoxyl radical, which displayed a first-order decay. The half-lives, 58.6, 25.8, and 15.6 min at −40 °C for 1, 2, and 3, respectively, follow the order of the stability constants of the complexes, indicating that the metal(II)-phenoxyl radical stability is in close relationship with the complexation properties of the present series of N3O-donor ligands.  相似文献   

15.
Complexes of FeCl2 with the known bis(3-methyl-2-thione-imidazolyl)methane (L1) and the new bis(3-tert-butyl-2-thione-imidazolyl)methane (L2) are reported. For both [L1FeCl2]n (3) and [L2FeCl2]n (4) X-ray crystallography reveals that 1D-polymeric chain structures are present in the solid state, with the two mercaptoimidazolyl units of L1 and L2 coordinating to different metal ions. Complexes 3 and 4 are further characterized by Mössbauer spectroscopy and SQUID magnetometry. NMR spectroscopy suggests that the complexes largely dissociate in polar solvents. X-ray structures of L2 and its precursor bis(imidazolium) salt are also reported.  相似文献   

16.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

17.
The Schiff base ligands 2-(2,6-diisopropylphenyliminomethyl)phenol H(L1), 5-diethylamino-2-(2,6-diisopropylphenyliminomethyl)phenol H(L2), 2,4-di-tert-butyl-6-(2,6-diisopropylphenyliminomethyl)phenol H(L3), 3-(2,6-diisopropylphenyliminomethyl)naphthalen-2-ol H(L4) and 4-(2,6-diisopropylphenyliminomethyl)-5-hydroxymethyl-2-methylpyridin-3-ol H(L5) have been synthesized by the condensation, respectively, of salicylaldehyde, 4-(diethylamino)salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, 2-hydroxy-1-napthaldehyde and pyridoxal with 2,6-diisopropylaniline. The copper(II) bis-ligand complexes [Cu(L1)2] 1, [Cu(L2)2] 2, [Cu(L3)2] 3, [Cu(L4)2] 4 and [Cu(L5)2] · CH3OH 5 of these ligands have been isolated and characterized. The X-ray crystal structures of two of the complexes [Cu(L1)2] 1 and [Cu(L5)2] · CH3OH 5 have been successfully determined, and the centrosymmetric complexes possess a CuN2O2 chromophore with square planar coordination geometry. The frozen solution EPR spectra of the complexes reveal a square-based CuN2O2 chromophore, and the values of g and g/A index reveal enhanced electron delocalization by incorporating the strongly electron-releasing -NEt2 group (2) and fusing a benzene ring on sal-ring (4). The Cu(II)/Cu(I) redox potentials of the Cu(II) complexes reveal that the incorporation of electron-releasing -NEt2 group and fusion of a benzene ring lead to enhanced stabilization of Cu(II) oxidation state supporting the EPR spectral results. The hydrogen bonding interactions between the two molecules present in the unit cell of 5a generate an interesting two-dimensional hydrogen-bonded network topology.  相似文献   

18.
Copper(II) coordination complexes of the neutral ligand, tris(3-tert-butyl-5-methyl-1-pyrazolyl)methane (L2′), i.e. the copper(II) nitrato complexes [Cu(L2′)(NO3)][Cu(NO3)4]1/2 (1) and [Cu(L2′)(NO3)](ClO4) (2) and the copper(II) chloro complex [Cu(L2′)(Cl)](ClO4) (3), and its anionic borate analogue, hydrotris(3-tert-butyl-5-methyl-1-pyrazolyl)borate (L2), i.e. the copper(II) nitrato complex [Cu(L2)(NO3)] (4) and the copper(II) chloro complex [Cu(L2)(Cl)] (5), were synthesized in order to investigate the influence of ligand framework and charge on their structure and physicochemical properties. While X-ray crystallography did not show any definitive trends in terms of copper(II) atom geometry in four-coordinate copper(II) chloro complexes 3 and 5, different structural trends were observed in five-coordinate copper(II) nitrato complexes 1, 2, and 4. These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, ESR, IR/far-IR, and X-ray absorption spectroscopy.  相似文献   

19.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

20.
Halide abstraction from the 18 electron Ru(II) complex RuCl(CO)2[2,6-(CH2PtBu2)2C6H3] (2) with AgPF6 results in the exclusive formation of the cationic complex {Ru(CO)2[2,6-(CH2PtBu2)2C6H3]}+PF6 (3). The molecular structures of 2 and 3 were determined by complete single-crystal diffraction studies. X-ray crystallographic analysis of 3 reveals that the “open” coordination site is occupied by an agostic interaction between the metal center and an sp3 C-H bond of a tert-butyl substituent. DFT gas phase calculations (B97-1/SDD) show the necessity of two sterically demanding tert-butyl substituents on one P donor atom for the agostic interaction to occur. The reaction of 3 with H2 results in the quantitative conversion to {Ru(H)(CO)2[2,6-(CH2PtBu2)2C6H4]}+PF6 (4) where the aromatic Cipso-H bond is η2-coordinated to the metal center. Treatment of the agostic complex 4 with Et3N results in the formation of the neutral complex Ru(H)(CO)2[2,6-(CH2PtBu2)2C6H3] (5). The mechanistic details of 3 + H2 → 4 were investigated by DFT calculations at the B97-1/SDB-cc-pVDZ//B97-1/SDD level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号