首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dicarbonyl and diphosphine complexes of the type (η5-C5H5)Fe(L)2ER3 (L2 = (CO)2 (a), (Ph2P)2CH2 (b); ER3 = CH3 (1a/b); SiMe3 (2a/b), GeMe3 (3a/b), SnMe3 (4a/b)) were synthesized and studied electrochemically. Cyclic voltammetric studies on the dicarbonyl complexes 1a-4a revealed one electron irreversible oxidation processes whereas the same processes for the chelating phosphine series 1b-4b were reversible. The Eox values found for the series 1a-4a were in the narrow range 1.3-1.5 V and in the order Si > Sn ≈ Ge > C; those for 1b-4b (involving replacement of the excellent retrodative π-accepting CO ligands by the superior σ-donor and poorer π-accepting phosphines) have much lower oxidation potentials in the sequence Sn > Si ≈ Ge > C. This latter oxidation potential pattern relates directly to the solution 31P NMR chemical shift data illustrating that stronger donation lowers the Eox for the complexes; however, simple understanding of the trend must await the results of a current DFT analysis of the systems.  相似文献   

2.
Three doubly-bridged, trinuclear copper(II) compounds with hydroxo and carboxylato bridges, 1[Cu3(L1)2(μ-OH)2(μ-propionato)2](1), [Cu3(L2)2(μ-OH)2(μ-propionato)2(DMF)2] (2) and 1{[Cu3(L3)2(μ-OH)2(μ-propionato)2]} [Cu3(L3)2(μ-OH)2(μ-propionato)2(DMF)2]} (3) [HL1 = N-(pyrid-2-ylmethyl)benzenesulfonylamide, HL2 = N-(pyrid-2-ylmethyl)toluenesulfonylamide, HL3 = N-(pyrid-2-ylmethyl)naphthalenesulfonylamide], have been synthesized and characterized. 1 is built from [Cu3(L1)2(μ-OH)2(μ-propionato)2] clusters. Each unit contains three copper(II) with two different coordination environments: the terminal centers are square-base pyramidal whereas the central copper is square planar. 2 presents a similar square-base pyramidal geometry in the terminal centers, but the central copper is six-coordinate. 3 shows an unusual 1D coordination polymer comprised of two distinct building blocks: one similar to that found in 1 and the other similar to that found in 2. The magnetic susceptibility measurements (2-300 K) reveal a ferromagnetic interaction between the Cu(II) ions with J values of 76.0, 55.0, and 48.0 cm−1 for 1, 2, and 3, respectively. Emission spectroscopy, thermal denaturation, viscosimetry and cyclic voltammetry show an interaction of the complexes with DNA through the sugar-phosphate backbone. All three Cu(II) complexes were found to be very efficient agents of plasmid DNA cleavage in the presence of ascorbato or mercaptopropionic acid. Both the kinetics and the mechanism of the cleavage reaction have also been examined.  相似文献   

3.
Reaction of [WVIS4]2− with ethane-1,2-dithiol edtH2 in the presence of the sulfide scavenger Cd2+ yielded the dinuclear tungstate syn-[{(edt)WV(O/S)}2(μ-S)2]2− (1), with the terminal S/O disordered over the two tungsten sites in the ratio 0.8:02. In the presence of thiocyanate, phosphine and CuI, the anionic cuboidal clusters of composition [{(SCN)3WV}2{CuI(PPh3)}23-S)4]2− (2) and (3, diphos = 1,2-bis(o-diphenylphosphinophenyl)ethane), and possibly via an intermediate [{(SCN)3WVS}2(μ-S)2]4−. The crystal and molecular structures of [Et4N]21, [Et4N]22 · H2O and [Et4N]23 · H2O have been determined.  相似文献   

4.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

5.
Photolysis of M2(CO)4(μ-S-t-Bu)2, where M = Rh or Ir, in Nujol matrices at ca. 90 K results in simple CO loss to form a tricarbonyl intermediate analogous to that observed for Rh2(CO)4(μ-Cl)2. Photolysis of the anions, [M(CO)2Cl2]1−, where M = Rh or Ir, in inert ionic matrices at ca. 90 K, results in CO-loss to form an intermediate analogous to that formed by Rh(CO)2(i-Pr2HN)Cl. Finally, photolysis of trans-Ir(CO)(PMe3)2Cl in a Nujol matrix at ca. 90 K gives rise to a new species whose carbonyl band is shifted slightly down in energy as has been observed for trans-Rh(CO)(PMe3)2Cl. In all cases the iridium compounds behave similarly to the rhodium species although the photon energy for iridium photochemistry is typically above that of the rhodium compounds.  相似文献   

6.
A new polynuclear copper (II) complex, derived from the azido-bridging ligand and 2-aminopyrimidine, has been synthesized and its 3-D structure has been determined by X-ray diffraction methods at two different temperatures. The compound crystallizes in the triclinic system space group, with the central copper atom lying on an inversion centre. The crystal structure is built up by trinuclear units (each of them contains two double end-on azido bridges) linked through two azide ions in an end-to-end (EE) fashion, to yield the polymer chain [Cu3(ampym)21,1-N3)41,3-N3)2(dmf)2]n. Magnetic susceptibility measurement shows a ferromagnetic interaction above 30 K, whereas a weak anti-ferromagnetic interaction prevails in the range of 30-2 K.  相似文献   

7.
The title complexes, [M(Diap)2(OAc)2] · H2O (M = Zn,Cd; Diap = 1,3-diazepane-2-thione; OAc = acetate) with an MO2S2 configuration, have been characterized by X-ray crystallography as well as FT-IR, 1H and 13C NMR spectroscopy. In these complexes, the metal atoms lie in a pseudo-tetrahedral environment and are coordinated by the thione sulfur atoms of two neutral 1,3-diazepane-2-thione ligands and one oxygen atom from each of two monodentate acetate anions. In both complexes, there are two intramolecular N-H?O hydrogen bonds, each being between one NH group of a Diap ligand and the uncoordinated O atom of an OAc ligand. The water molecule is also involved in hydrogen bonds, as an acceptor and as a donor twice, linking together three symmetry-related complexes. The Cd complex undergoes a structural phase transition from a monoclinic form at 150 K with Z′ = 2 to a smaller monoclinic cell at room temperature with Z′ = 1 without loss of crystallinity. The Zn complex does not exhibit an equivalent phase transition, and at 150 K is isostructural with the room-temperature form of the Cd complex. All three crystallographically independent molecules found for the Cd complex (two at low temperature and one at room temperature) have essentially the same structure except for small changes in the conformations of the ligands. Tetrahedral coordination with monodentate carboxylate ligands is common for Zn complexes of this kind, but is unusual for Cd complexes, and is the result of the bulky Diap ligands.  相似文献   

8.
The room temperature reactions of RSH (R = Et, Ph) with (CO)3Mo(μ-dppm)2Ru(CO)3 (1) in toluene yield (CO)2Mo(μ-SR)(μ-CO)(μ-dppm)2Ru(H)(CO) [R = Et (3); Ph (4)], which are characterized by elemental analysis, 1H NMR and IR spectroscopies and, in the case of 3, by X-ray crystallography. The complexes contain a trans,trans-Mo(μ-dppm)2Ru unit with a bridging thiolate, a terminal hydride at the Ru, three terminal CO ligands (two at the Mo, and one at the Ru), and one semi-bridged CO closer to the Mo.  相似文献   

9.
The single crystals of dichloro-bridged dinuclear Rh-Cp* complex with neutral Me2CO molecules, [Rh2(Cp*)2(μ-Cl)2(Me2CO)2](BF4)2 (Cp* = η5-C5Me5), was isolated and the structure was in first determined crystallographically.  相似文献   

10.
Further studies have been carried out into the reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of activated alkylating agents of the type RC(O)CH2X (R = organic moiety, e.g. phenyl, pyrenyl; X = Cl, Br). Alkylation of both sulfide centers is observed for PhC(O)CH2Br, 3-(bromoacetyl)coumarin [CouC(O)CH2Br], and 1-(bromoacetyl)pyrene [PyrC(O)CH2Br], giving dications [Pt2{μ-SCH2C(O)R}2(PPh3)4]2+, isolated as their PF6 salts. The X-ray structure of [Pt2{μ-SCH2C(O)Ph}2(PPh3)4](PF6)2 shows the presence of short Pt?O contacts. In contrast, the corresponding chloro compounds [typified by PhC(O)CH2Cl] and imino analogues [e.g. PhC(NOH)CH2Br] do not dialkylate [Pt2(μ-S)2(PPh3)4]. The ability of PhC(O)CH2Br to dialkylate [Pt2(μ-S)2(PPh3)4] allows the synthesis of new mixed-alkyl dithiolate derivatives of the type [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)4]2+ (R = Et or n-Bu), through alkylation of in situ-generated monoalkylated compounds [Pt2(μ-S)(μ-SR)(PPh3)4]+ (from [Pt2(μ-S)2(PPh3)4] and excess RBr). In these heterodialkylated systems ligand replacement of PPh3 occurs by the bromide ions in the reaction mixture forming monocations [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+. This ligand substitution can be easily suppressed by addition of PPh3 to the reaction mixture. The complex [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ was crystallographically characterized. X-ray crystal structures of the bromide-containing complexes [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+ (R = Et, Bu) are also reported. In both structures the coordinated bromide is trans to the SCH2C(O)Ph ligand, which adopts an axial position, while the ethyl and butyl substituents adopt equatorial positions, in contrast to the structures of the dialkylated complexes [Pt2{μ-SCH2C(O)Ph}2(PPh3)4]2+ and [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ (and many other known analogues) where both alkyl groups adopt axial positions.  相似文献   

11.
Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)2Cu(μ-N,O:O′-apm)2(H2O)Cu(apm)2(H2O)] · 5H2O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) Å, b = 15.6840(1) Å, c = 21.5280(1) Å, α = 93.02(1)°, β = 93.21(1)°, γ = 92.66(1)° and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and β-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure.  相似文献   

12.
Two trinuclear NiFe2 complexes Fe2(CO)63-S)2[Ni(Ph2PCH2)2NR] (R = n-Bu, 1; Ph, 2) containing an internal base were prepared as biomimetic models for the active sites of FeFe and NiFe hydrogenases. Treatment of complex Fe2(CO)63-S)2[Ni(Ph2PCH2)2N(n-Bu)] (1) with HOTf gave an N-protonated complex [Fe2(CO)63-S)2{Ni(Ph2PCH2)2NH(n-Bu)}][OTf] ([1H][OTf]). The structures of complexes 1, 2 and [1H][OTf] were determined by X-ray crystallography, which shows that the proton held by the N atom of [1H][OTf] lies in an equatorial position. Cyclic voltammograms of complexes 1 and [1H][OTf] were studied and compared with that of Fe2(CO)63-S)2[Ni(dppe)].  相似文献   

13.
A mixed ligand and dimeric CuII complex [(phen)2Cu(μ-L)Cu(phen)2]L · 12.5H2O (H2L = succinic acid) containing bridging succinate moiety and also non-coordinated succinate dianion was prepared from polymeric Cu(II) succinate by nucleophilic reaction with o-phenanthroline (phen) followed by depolymerization. The dimeric product was characterized by crystallographic, spectroscopic and thermoanalytical studies. The complex crystallizes in triclinic crystal system and is composed of succinate bridged [(phen)2Cu(μ-L)Cu(phen)2]2+ complex cations, non-coordinated succinate anions and hydrogen bonded water molecules. Within the dimeric cationic unit, each of the Cu atoms is octahedrally coordinated by four N atoms of both phen ligands and both O atoms of a carboxylate moiety of the bridging succinate group in chelating form. Through intermolecular π-π stacking interactions, the complex cations form positively charged 2-D layers, between which the non-coordinating succinate anions and water molecules are sandwiched. Both the electronic and EPR studies indicate that the dimeric complex undergoes partial dissociation in solution state to exist in two structural forms. The kinetic and thermodynamic parameters involved in three stage thermal decompositions of the dimeric complex could also be evaluated using Coats-Redfern method.  相似文献   

14.
The binuclear complex {Cu(μ-CCPh)(triphos)}2 [triphos = (PPh2CH2)3CMe] has been obtained from a reaction between {Cu(CCPh)}n and triphos. The two copper atoms are bridged unsymmetrically by two CCPh groups, each attached through one carbon only [Cu-C, 2.016(4) Å], the separation between the two coppers being 2.4663(8) Å. Only two of the three phosphorus atoms in each ligand are coordinated to copper [Cu-P(1,2) 2.281, 2.273(1) Å]. The observed structure may be rationalised using a recent theoretical study [C. Mealli, S.S.M.C. Godinho, M.J. Calhorda, Organometallics 20 (2001) 1734] and differs from that assumed for the rationalisation of its luminescence properties [V. Pawlowski, G. Knör, C. Lennartz, A. Vogler, Eur. J. Inorg. Chem. (2005) 3167].  相似文献   

15.
Novel two iridium terphenyl complexes were prepared and their structures were characterized crystallographically. The reaction of [Ir(cod)2]BF4 with p-terphenyl (p-tp) in CH2Cl2 was carried out to afford dinuclear Ir(I) complex {[Ir2(p-tp)(cod)2](BF4)2 · 2CH2Cl2}3 (cod=1,5-cyclooctadiene) (1 · 2CH2Cl2), whereas the reaction of the intermediate [Ir(η5-C5Me5)(Me2CO)3]3+ in Me2CO with m-terphenyl (m-tp) was done to provide mononuclear Ir(III) complex [Ir(m-tp)(η5-C5Me5)](BF4)2 (2). In complex 1 · 2CH2Cl2, two Ir atoms are η6-coordinated to both sides of terminal benzene rings from the upper and lower sides in the p-tp ligand, while one Ir atom is η6-coordinated to one side of the terminal benzene ring in the m-tp ligand in complex 2. Each crystal structure describes the first coordination mode found in metal complexes with the m- and p-tp ligands.  相似文献   

16.
The room temperature electronic absorption spectra of the oxalate bridged MM quadruply bonded complexes [(tBuCO2)3M2]2(μ-O2C2O2), where M = Mo or W have been recorded in H2O, THF:H2O mixtures, THF, CH2Cl2, toluene, DMSO, aniline, toluene saturated with N,N-dimethylaniline and ethanol. The strong absorptions in the visible region of the electronic absorption spectra assignable to the metal-to-ligand (bridge) charge transfer are shown to be highly solvent dependent. Those samples prepared in H2O, CH2Cl2 and toluene are shown to comprise of a suspension of microcrystalline particles ranging in size from 100 nm to 5 μm. Individual particles were found by scanning electron microscopy to have an aspect ratio of ∼10:1, all being needle shaped. The spectra in THF, EtOH, aniline, DMSO and toluene-N,N-dimethylaniline all show similar vibronic progressions and are attributed to discrete solvated molecular species. The spectra recorded in aniline are notably red-shifted which is proposed to arise from a combination of hydrogen bonding and Lewis base stabilization of the photoexcited state.  相似文献   

17.
Two new lead(II) complexes with the ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy), [Pb(pyterpy)(MeOH)I2] · MeOH and [Pb(pyterpy)(μ-AcO)]2(ClO4)2, have been synthesized and characterized by CHN elemental analysis, 1H NMR-, 13C NMR-, IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The single crystal X-ray analyses show that the coordination number in these complexes is six with three “pyterpy” N-donor atoms and two or three of the anionic ligands. The arrangement of donor atoms in these complexes suggest a gap or hole in the coordination geometry of the lead atoms, possibly occupied by a stereoactive lone pair of electrons on lead(II) and the coordination sphere is hemidirected. The potentially tetradentate ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) acts as a tridentate donor to Pb(II). The noncoordinated pyridyl group interacts with hydrogen atoms of adjacent molecules and forms normal hydrogen bonds in [Pb(pyterpy)(MeOH)I2] · MeOH and weak C-H?N interactions for [Pb(pyterpy)(μ-AcO)]2(ClO4)2, thus extending the monomeric structures into one-dimensional networks.  相似文献   

18.
The reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with an equivalent of Bz2S3 at ambient temperature gave [CpCr(CO)2]2S (3) [L.Y. Goh, T.W. Hambley, G.B. Robertson, Organometallics 6 (1987) 1051], novel complexes of [CpCr(CO)2(SBz)]2 (4) and together with [CpCr(SBz)]2S (5) as main products. Thermolytic studies showed that 4 underwent complete decarbonylation to give [CpCr(SBz)]2S (5). Final thermal decomposition of 3 and 5 eventually yielded Cp4Cr4S4 (6) (Goh et al., 1987) after prolonged reaction at 100 °C. However, the reaction of [CpCr(CO)2]2 (CrCr) (2) with Bz2S3 was much slower at ambient temperature which required 72 h to complete eventually yielding 3 and 5. All the products have been characterized by elemental and spectral analyses. 4 has been structurally determined.  相似文献   

19.
Some novel hydrido-anions of general formula [Ir4H(CO)9(μ-L-L)] (L-L = Ph2PCH(CH3)PPh2, Ph2P(CH2)2PPh2, Ph2P(CH2)3PPh2 and Ph2AsCH2AsPh2) have been obtained by the reaction of [Ir4(CO)10(μ-L-L)] with the base 1,8-diazabicyclo[5.4.0]undec-7-ene in wet dichloromethane. According to IR and 1H, 31P and 13C NMR data at low temperature, these anionic derivatives display a single conformation in solution: three edge-bridging COs around the triangular basal face and both the hydride and the bidentate ligands located in axial positions relative to this face. The structures of four compounds were established by X-ray diffraction studies, which confirmed the configuration proposed on the basis of spectroscopic data.  相似文献   

20.
The reactions of cycloaurated gold(III) dichloride complexes [LAuCl2] (L = 2-C6H4CH2NMe2 or 2-C6H4PPh2NPh) with monoanionic tripodal oxygen donor Kläui ligands [(η5-C5H5)Co{P(O)(OR)2}3] (R = Me or Et) results in the formation of cationic gold(III) salts [LAu{OP(OR)2}3Co(η5-C5H5)]+. An X-ray structure determination on [(2-C6H4PPh2NPh)Au{OP(OR)2}3Co(η5-C5H5)]BF4 shows that the Kläui ligand coordinates strongly to the gold through two oxygen atoms, and weakly through the third, giving the gold(III) a distorted square pyramidal geometry. This is the first structurally characterised example of this geometry for gold(III) with ligands other than those containing rigid bipyridine or phenanthroline backbones. In solution at room temperature there is rapid interchange (on the NMR timescale) between the oxygen atoms of the Kläui ligands, which is frozen out on cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号