首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of Zn(κ2O,O′-OAc)2·2H2O with two equiv of 3,5-lutidine in methanol at room temperature for 12 h afforded [Zn(OAc)2(3,5-lutidine)2]· H2O (1) in 91% yield. The acetate exchange reaction of 1 with two equiv of aryl carboxylic acids in methanol at room temperature for 12 h afforded [Zn(μ2-κ1O:κ1O′-O2CAr)2(3,5-lutidine)]2 [Ar = C6H5 (2) and C6H4Me-3 (3)], [Zn(OC(O)C6H4Me-2)2(3,5-lutidine)2] (4) and [Zn(κ2O,O′−O2CC6H4Me-4)2(3,5-lutidine)2] (5) in ?90% yield. Complexes 1-5 were characterized by microanalytical, IR, solution (1H and 13C) and solid-state cross-polarization magic angle spinning 13C NMR and X-ray diffraction data. The zinc atom in 1 is surrounded by nitrogen atom of two 3,5-lutidine and oxygen atom of two monodentate acetate moiety and thus attains a tetrahedral geometry. One of the acetate moieties is hydrogen bonded with a water molecule in the crystal lattice. Complexes 2 and 3 possess a dinuclear paddlewheel framework with a square pyramidal geometry around the zinc atom whereas 4 and 5 are mononuclear species with the zinc atom in tetrahedral and an octahedral geometry, respectively. Thermogravimetric analyses of 2-5 suggested ZnO as the decomposed product followed by the confirmation from the powder X-ray diffraction patterns. Enormous gas evolution resulting in porous ZnO during thermal decomposition was evidenced from scanning electron microscopic images.  相似文献   

2.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

3.
A family of four new phenoxo-bridged binuclear manganese(III) complexes of the general formula, [Mn(L)(X)]2 where L = [N,N′-bis(salicylidene)]propane-1,2-diamine and X = salicylaldehyde anion (sal) (1); NCS (2); NCO (3) and [Mn(L′)(N3)]2·2C2H5OH (4) where L′ = [N,N′-bis(2-hydroxyacetophenylidene)]propane-1,2-diamine has been prepared. The syntheses have been achieved by reacting manganese perchlorate with 1,2-diaminopropane and salicylaldehyde (or 2-hydroxyacetophenone for 4) or along with the respective pseudohalides so that the tetradentate Schiff base H2L or H2L′ is obtained in situ to bind the Mn(III) ion. The complexes have been characterized by IR spectroscopy, elemental analysis, crystal structure analysis and variable-temperature magnetic susceptibility measurements. The single crystal X-ray diffraction studies show that the compounds are isostructural containing dimeric Mn(III) units with bridging phenolate oxygen atoms. Low temperature magnetic studies indicate that the complexes 1-3 exhibit intradimer ferromagnetic exchange as well as single-molecule magnet (SMM) behavior while complex 4 is found to undergo an intradimer antiferromagnetic coupling.  相似文献   

4.
The germanium(II) aryloxide complexes (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{NH3}] (1) and [Ge(OC6H3Ph2-2,6)2] (2) react with either ButI or MeI to yield the corresponding germanium(IV) compounds (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{But}{I}] (3), (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{Me}{I}] (4), [Ge(OC6H3Ph2-2,6)2(But)(I)] (5), and [Ge(OC6H3Ph2-2,6)2(Me)(I)] (6). Compound 6 reacts with 2,6-diphenylphenol to yield [Ge(OC6H3Ph2-2,6)3(Me)] (7), while 3-5 do not. The X-ray crystal structures of 3-5 and 7 were determined, and 3-5 represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.  相似文献   

5.
The reactions of salicylaldehyde oxime (H2salox) with CuII precursors yielded the known complexes [Cu(Hsalox)2] (1) and [Cu(Hsalox)2]n (2), as well as complexes [Cu3(salox)(L1)(L2)]·MeCN (3·MeCN), [CuCl(L1)] (4) and [Cu2Na(O2CMe)5(HO2CMe)]n (5), where L1 = o-O-C6H4-CHNO-C(CH3)NH and L23− = o-O-C6H4-CHNO-C(o-O-C6H4)N. L1 was formed in situ via the nucleophilic addition of the oximato O-atom of salox2− to the unsaturated nitrile group of the MeCN reaction solvent. L23− is also formed in situ probably through the nucleophilic attack of the oximato O-atom to the unsaturated nitrile group of salicylnitrile; the latter, although not directly added to the reaction mixture, can be produced via the dehydration of salox2−. Compounds 1 and 2 contain Hsalox bound to the metal center in two different coordination modes; they both contain the same mononuclear unit, however a 2D network is generated in 2 due to a relatively long Cu-Ooximato bond. Compound 3 contains three different ligands, i.e. salox2−, L1 and L23−, which act as μ32OO′:κN, κONN′ and μ32O2NO′:κN′, respectively, whereas 4 consists of a square planar CuII atom bound to a κONN′ L1 and a chloride ion. Compound 5 consists of dinuclear [Cu2(O2CMe)5(HO2CMe)] units and Na+ ions assembled into an overall 3D network structure. Magnetic susceptibility measurements from polycrystalline samples of 2 and 5 gave best-fit parameters J = +0.36 cm−1 (H = −J?i?j) and J = −360 cm−1, zj = +20 cm−1 (H = −J?i?j − zJ〈Sz?z), respectively.  相似文献   

6.
The use of succinamic acid (H2sucm) in Cu(ClO4)2·6H2O/N,N′-donor [2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (dmbpy), 4,4′-bipyridine (4,4′-bpy)] reaction mixtures yielded compounds [Cu2(Hsucm)3(bpy)2](ClO4)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)(H2O)(bpy)](ClO4)2 (2), [Cu4(Hsucm)5(dmbpy)4]n(ClO4)3n·nH2O ·0.53nMeOH (3·nH2O·0.53nMeOH), [Cu2(Hsucm)2(dmbpy)2(H2O)2](ClO4)2·2H2O (4·2H2O), [Cu2(Hsucm)2(phen)2(H2O)2](ClO4)2·1.8MeOH (5·1.8MeOH), [Cu2(Hsucm)2(phen)2(MeOH)2](ClO4)2·MeOH (6·MeOH) and [Cu(Hsucm)2(H2O)(4,4′-bpy)]n (7). The succinamate(−1) ligand exists in five different coordination modes in the structures of 1-7, i.e. the common syn, syn μ2OO′ in 1-6, the μ22O in 1, the μ22OO′ in 1, the μ32O2O′ in 3, and the monodentate κO in 7. The primary amide group of Hsucm remains uncoordinated and participates in intra- and intermolecular hydrogen bonding interactions leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of representative complexes was monitored by TG/DTG and DTA measurements.  相似文献   

7.
A new dinuclear ruthenium(II) catecholato complex [Cp*Ru(κ262-1,2-O2C6H4)RuCp*] (3; Cp* = η5-C5Me5) has been prepared by the reaction of [Cp*RuCl]4 with 2 equiv. of disodium catecholate in THF. Complex 3 has a dinuclear structure, in which one of the Cp*Ru fragments is κ2-bonded to the two oxygen atoms and the other is η6-bonded to the aromatic ring. Similar treatment of [Cp*RuCl]4 with disodium 2,3-naphthalenediolate affords an analogous κ26-bonded dinuclear complex [Cp*Ru(κ262-2,3-O2C10H6)RuCp*] (4) with selective π-complexation at the oxygen-substituted naphthalene ring. The molecular structure of 4 has been determined by X-ray crystallography. The oxygen-bound ruthenium atoms in complexes 3 and 4 are coordinatively unsaturated and readily uptake 1 equiv. of carbon monoxide to give the corresponding carbonyl adducts [Cp*Ru(CO)(κ262-1,2-O2C6H4)RuCp*] (5) and [Cp*Ru(CO)(κ262-2,3-O2C10H6)RuCp*] (6), respectively.  相似文献   

8.
The reaction of [PtMe3(MeOH)(bpy)][BF4] (1) with the thionucleobases 2-thiocytosine (SCy, 2) and 1-methyl-2-thiocytosine (1-MeSCy, 3) resulted in the formation of the complexes [PtMe3(bpy)(SCy-κS)][BF4] (4) and [PtMe3(bpy)(1-MeSCy-κS)] [BF4] (5), respectively. The complexes were characterized by 1H and 13C NMR spectroscopy as well as by single-crystal X-ray analyses of 4 · MeOH and 5. In 4 · MeOH two strong hydrogen bonds (N4-H?N3′: N4?N3′ 2.976(7) Å) between the thiocytosine ligands give rise to base pairing thus forming dinuclear cations [{PtMe3(bpy)(SCy-κS)}2]2+. In both complexes the platinum atom is octahedrally coordinated [PtC3N2S] by three methyl ligands, the 2,2′-bipyridine ligand and the κS coordinated nucleobase (configuration index: OC-6-33). The structural investigations gave evidence that the sulfur atoms of the nucleobase ligands in 4 · MeOH and 5 have to be regarded as sp3 and sp2 hybridized, respectively. Thus, the ligand in 4 · MeOH has to be considered as the deprotonated thiol-amino form of thiocytosine being reprotonated at N1. In complex 5 the 1-MeSCy is coordinated in its thione-amino form. DFT-calculations of the base-paired dinuclear cation in 4 as well as of 4 itself gave proof of the strength of the hydrogen bond (8.5 kcal/mol) and exhibited that cation-anion interactions influence the conformation of the complex. In vitro cytotoxicity studies of 4 and 5 using nine different human tumor cell lines revealed moderate cytotoxic activity.  相似文献   

9.
The reactions of six diimine ligands with Cu(II) and Ni(II) halide salts have been investigated. The diimine ligands were Ph2CN(CH2)nNCPh2 (n = 2 (Bz2en, 1a), 3 (Bz2pn, 1b), 4 (Bz2bn, 1c)), N,N′-bis-(2-tert-butylthio-1-ylmethylenebenzene)-2,2′diamino-biphenyl (2), N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,3-diaminobenzene (3) and N,N′-bis-(2-chloro-1-ylmethylenebenzene)-1,2-ethanediamine (4). Reactions of 1a-c, 2-4 with CuCl2·2H2O in dry ethanol at ambient temperature led to complete or partial hydrolysis of the diimine ligands to ultimately form copper diamine complexes. The non-hydrolyzed complexes of 1b and 1c, [Cu(L)Cl2] (L = 1b, 1c), could be isolated when the reactions were carried out at low temperatures, and the half-hydrolyzed complex [Cu(Bzpn)Cl2] could also be identified via X-ray crystallography. Similarly, reactions of 1a or 1b with NiCl2·6H2O or [NiBr2(dme)] led to rapid hydrolysis of the imines and Ni complexes containing half-hydrolyzed 1a (Bzen; [trans-[Ni(Bzen)2Br2]) and 1b (Bzpn; [Ni(Bzpn)Br2] could be isolated and identified via single crystal X-ray analysis. Kinetic studies were made of the hydrolyses of 1a, 1b in THF and 2 in acetone, in the presence of Cu(II), and of 1a in acetonitrile, in the presence of Ni(II). Activation parameters were determined for the latter reaction and for the copper-catalyzed hydrolysis of 2; the relatively large negative activation entropies clearly indicate rate-determining steps of an associative nature.  相似文献   

10.
Two new ligand-containing histidine based on N,N′,N″-tris(N-benzyl-l-histidinyl)tri(2-aminoethyl)amine, L1, namely N,N′,N″-tris[(1S)-2-methoxy-2-oxy-1-(1-benzylimidazol-4-ylmethyl)]nitrilotriacetamide L2 and N,N′,N″-tris{N-benzyl-N-[N-benzyl-N-(N-benzyl-l-histidinyl)-l-histidinyl]-l-histidinyl}tri(2-aminoethyl)amine L3 were prepared. Zinc(II) binding studies by these ligand systems were analyzed by means of potentiometric and 1H NMR titrations in aqueous methanol (33 % v/v). Subsequently their zinc(II) complexes [L1Zn(H2O)](ClO4)2·HClO4 (1), [L2Zn(OH2)](ClO4)2·H2O (2), and ([L3Zn3(H2O)3](ClO4)6·3HClO4·5H2O (3), respectively were synthesized and characterized. The reactivity of the trinuclear complex (3) toward the hydrolysis of the toxic organophosphate parathion was investigated and compared with that of the mononuclear reference complex (1). From the pH dependence of the apparent rate constants, and the deprotonation constant (pKa) of the coordinated water molecules in (1), the active species were confirmed to be {[HL1Zn(OH)]2+/[L1Zn(H2O)]2+} at pH 8.5. The trizinc complex (3) effects hydrolysis of parathion, with three times rate enhancement over the mononuclear (1), indicating that cooperative action of the three zinc centers is limited.  相似文献   

11.
The novel dimer of the composition [Pt2Cl4(μ-(κP1:κP2-o-MeO-trans-dppen))2] (1) (o-MeO-trans-dppen = 1,2-(bis(o-methoxyphenyl)phosphanyl)ethylene) has been prepared and characterized by a single crystal X-ray structure analysis, NMR spectroscopy, mass spectrometry and elemental analysis. This latter compound undergoes a [2+2] photocycloaddition reaction yielding the tetraphosphane all-trans-1,2,3,4-tetrakis(di(o-methoxyphenyl)phosphanyl)cyclobutane (o-MeO-dppcb). The X-ray structure of the dimeric Ni(II) complex that contains the latter ligand, of the formula [Ni2Cl4(μ-(κP1:κP2:κP3:κP4-o-MeO-dppcb))] (2) reveals that the apical coordination sites of both square pyramidal Ni(II) coordination spheres are occupied by methoxy-oxygen atoms of the ligand. As a consequence, this dimeric Ni(II) complex 2 is prone to a thermally induced regio- and diastereoselective metal-assisted methoxy-group cleavage. The stepwise formed new mono- and bis-phenolate complexes [Ni2Cl3(μ-(κO1,κP1:κP2:κP3:κP4-o-MeO-O-dppcb))] (3) and [Ni2Cl2(μ-(κO1,κP1:κP2:κO2,κP3:κP4-o-MeO-O,O′-dppcb))] (4), respectively, contain the novel chiral tetraphosphane ligands all-trans-1,2,3-tris((di-o-methoxyphenyl)phosphano)-4-((o-methoxy-phenyl)(o-phenolate)phosphano)cyclobutane (o-MeO-O-dppcb) and all-trans-1,2-bis((di-o-methoxyphenyl)phosphano)-3,4-bis((o-methoxyphenyl)(o-phenolate)phosphano)cyclobutane (o-MeO-O,O′-dppcb). Compounds 3 and 4 have been synthesized independently and are also fully characterized by both single crystal X-ray structure analyses, NMR spectroscopy, mass spectrometry and elemental analyses. The conversion of 2 into 3 and then further into 4 has been followed by a variable-temperature 31P{1H} NMR experiment with compound 2 in DMF-d7, revealing that the cleavage of the second methoxy group is kinetically disfavoured. This is in agreement with the X-ray structure analysis of 3, indicating the lack of any methoxy-oxygen atom coordination that could easily induce a further methoxy-group cleavage. o-MeO-O-dppcb and o-MeO-O,O′-dppcb are rare P-stereogenic tetraphosphine ligands and contribute to the synthetic field of new κ3-P,P,O-coordinating phosphanylphenolate ligands that are believed to be important for the SHOP process (SHOP, Shell Higher Olefin Process).  相似文献   

12.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

13.
A chiral Schiff base N-(S)-2-(6-methoxylnaphthyl)-propanoyl-N′-(2-hydroxylbenzylidene)hydrazine (H2L) has been synthesized. Reaction of H2L with Cu(OAc)2 · H2O led to the formation of a metal complex {[CuL] · H2O · 2DMF} (1). In complex 1, the potential dinegative tridentate L2− ligand acting as tetradentate bridging ligand coordinate to two metal ions so as to form a novel infinite metal-organic coordination chain structure. The enantiomerically pure ligand H2L presents two different sets of signals in the 1H NMR spectrum either in chloroform solution or in dimethylsulfoxide solution, showing the presence of both (E) and (Z) isomers. The X-ray structural investigations of H2L revealed that it is the fully extended E-configuration in the solid state.  相似文献   

14.
The platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1) was found to react with chelating N,N-ligands 2(RNCR)C5H4N (R/R=Ph/OH, H/Ph, Me/Ph) to form acyl(hydrido)platinum(IV) complexes [Pt(COMe)2Cl(H){2-(RNCR)C5H4N}] (R/R=Ph/OH 2a; H/Ph 2b; Me/Ph (2c)). Reactions of complex 1 with chelating S,S- and N,S-donors (RS-CH2-CH2-SR, 2-(RSCH2)C5H4N, R=Et, Ph, t-Bu) afforded acyl(chloro)platinum(II) complexes [Pt(COMe)Cl(RSCH2CH2SR)] (R=Et, 3a; Ph, 3b; t-Bu, 3c) and [Pt(COMe)Cl{2-(RSCH2)C5H4N}] (R=Et, 4a; Ph, 4b; t-Bu, 4c), respectively. All complexes were fully characterized by microanalysis, IR and NMR (1H, 13C) spectroscopy. Furthermore, molecular structures of complexes 3b and 4b were determined by single-crystal X-ray diffraction analyses revealing close to square-planar configuration. In complex 4b the acetyl ligand is trans to pyridine N atom (configuration index SP-4-2). The reactions are discussed in terms of consecutive oxidative addition and reductive elimination reactions.  相似文献   

15.
The synthesis, characterization, and application in asymmetric catalytic cyclopropanation of Rh(III) and Ir(III) complexes containing (Sa,RC,RC)-O,O′-[1,1′-binaphthyl-2,2′-diyl]-N,N′-bis[1-phenyl-ethyl]phosphoramidite (1) are reported. The X-ray structures of the half-sandwich complexes [MCl2(C5Me5)(1P)] (M = Rh, 2a; M = Ir, 2b) show that the metal-phosphoramidite bond is significantly shorter in the Ir(III) analog. Chloride abstraction from 2a (with CF3SO3SiMe3 or with CF3SO3Me) and from 2b (with AgSbF6) gives the cationic species [MCl(C5Me5)(1,2-η-1P)]+ (M = Rh, 3a; M = Ir, 3b), which display a secondary interaction between the metal and a dangling phenethyl group (NCH(CH3)Ph) of the phosphoramidite ligand, as indicated by NMR spectroscopic studies. Complexes 3a and 3b slowly decompose in solution. In the case of 3b, the binuclear species [Ir2Cl3(C5Me5)2]+ is slowly formed, as indicated by an X-ray study. Preliminary catalytic tests showed that 3a cyclopropanates styrene with moderate yield (35%) and diastereoselectivity (70:30 trans:cis ratio) and with 32% ee (for the trans isomer).  相似文献   

16.
The synthesis of a series of rhodium and iridium complexes bearing bulky cyclopentadienyl or hydro(trispyrazolyl)borate ligands is described. The rhodium cyclopentadienyl and hydrotris(pyrazolyl)borate diene compounds, [(η5-C5Me4But)Rh(η4-2,3-MeRC4H4] (R = H, 1; Me, 2) and TpMsRh(η4-2,3-MeRC4H4) (R = H, 3; Me, 4; TpMs is hydrotris(3-mesitylpyrazol-1-yl)borate), respectively, have been prepared from the corresponding Rh(I) diene precursors and Zn(C5Me4But)2 (for 1 and 2), or TlTpMs (for 3 and 4), as effective C5Me4But or TpMs transfer reagents. In contrast with these results, attempts to obtain a bis(ethylene) derivative of the TptolIr(I) unit (Tptol stands for hydrotris(3-p-tolylpyrazol-1-yl)borate) have provided instead the Ir(III) complex [(κ4-N,N′,N″,C-Tptol)-Ir(C2H5)(C2H4)] (5), whose formation requires C-H bond activation of a molecule of ethylene and of one of the Tptolp-tolyl substituents. In refluxing toluene 5 experiences metalation of a second p-tolyl substituent to give [(κ5-N,N′,N″,C,C′-Tptol)-Ir(C2H4)] (6), which features unusual κ5-Tptol coordination. The latter compound reacts with carbon monoxide to yield the corresponding carbonyl, 7.  相似文献   

17.
Five new octahedral iron(II) complexes [FeL2(4-dpa)]n(EtOH) (1), [FeL2(bipy)]n(DMF) (2), [FeL1(bpee)]n (3), [Fe2L3(1-meim)4](1-meim)4 (4) and [FeL1(DMAP)2] (5), with L1 and L2 being tetradentate coordinating Schiff base like ligands (L1 = (E,E)-[{diethyl-2,2′-[1,2-phenylenebis(iminomethylidyne)]bis[3-oxobutanato](2-)-N,N′,O3,O3′}, L2 = (3,3′)-[{1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentane-dionato)(2-)-N,N′,O2,O2′}) and L3 being a octadentate dinucleating coordinating Schiff base like ligand ({tetraethyl-(E,E,E,E)-2,2′,2′′,2′′′-[1,2,4,5-phenylentetra(iminomethylidine)]tetra[3-oxobutanoato](2-)-N,N′,N′′,N′′′,O3,O3′,O3′′,O3′′′}); 4-dpa = di(4-picolyl)-amine, bipy = 4,4′-bipyridine, bpee = trans-1,2-bis(4-pyridyl)ethylene, 1-meim = 1-methylimidazole and DMAP = 4-dimethylaminopyridine, have been synthesized and characterised using X-ray structure analysis and T-dependent susceptibility measurements. Both methods indicate that all iron(II) centres are in the paramagnetic high-spin state over the whole temperature range investigated. The O-Fe-O angle, the so called bit of the equatorial ligand, is with an average of 111° in the region typical for high-spin iron(II) complexes of this ligand type. In the case of compound 1 an infinite two-dimensional hydrogen bond network can be found, for the compounds 2-4 no hydrogen bond interactions are observed between the complex molecules. A comparison of the curve progression obtained from the magnetic measurements of the mononuclear complex 5 and the polymeric complexes 1-3 leads to the conclusion that no magnetic interactions are mediated over the bridging axial ligands. For the dinuclear complex 4 weak antiferromagnetic interactions between the two iron centres are found.  相似文献   

18.
Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition.  相似文献   

19.
The study of the reactivity of three 1-(2-dimethylaminoethyl)-1H-pyrazole derivatives of general formula [1-(CH2)2NMe2}-3,5-R2-pzol] {where pzol represents pyrazole and RH (1a), Me (1b) or Ph (1c)} with [MCl2(DMSO)2] (MPt or Pd) under different experimental conditions allowed us to isolate and characterize cis-[M{κ2-N,N′-{[1-(CH2)2NMe2}-3,5-R2-pzol])}Cl2] {MMPtPt (2a-2c) or Pd (3a-3c)} and two cyclometallated complexes [M{κ3-C,N,N′-{[1-(CH2)2NMe2}-3-(C5H4)-5-Ph-pzol])}Cl] {MPt(II) (4c) or Pd(II) (5c)}. Compounds 4c and 5c arise from the orthometallation of the 3-phenyl ring of ligand 1c. Complex 2a has been further characterized by X-ray crystallography. Ligands and complexes were evaluated for their in vitro antimalarial against Plasmodium falciparum and cytotoxic activities against lung (A549) and breast (MDA MB231 and MCF7) cancer cellular lines. Complexes 2a-2c and 5c exhibited only moderate antimalarial activities against two P. falciparum strains (3D7 and W2). Interestingly, cytotoxicity assays revealed that the platinacycle 4c exhibits a higher toxicity than cisplatin in the three human cell lines and that the complex 2a presents a remarkable cytotoxicity and selectivity in lung (IC50 = 3 μM) versus breast cancer cell lines (IC50 > 20 μM). Thus, complexes 2c and 4c appear to be promising leads, creating a novel family of anticancer agents. Electrophoretic DNA migration studies in presence of the synthesized compounds have been performed, in order to get further insights into their mechanism of action.  相似文献   

20.
Mercury(II) acetate reacts with the 1-alkyl-2-(arylazo)imidazoles [RaaiR′ where R = H (a), Me (b); R′ = Me (1/3/5), Et (2/4/6)] and sodium azide in methanol solution to afford azido bridged polymeric complexes [Hg(RaaiR′)(N3)2]n (3/4). On setting up similar reaction condition, the reaction of Hg(OAc)2 with RaaiR′ and NH4SCN has yielded, instead of polymer, an ion-pair [Hg(RaaiR′)4][Hg(SCN)4] (5/6). The complexes are characterised by elemental analysis, IR, UV-Vis, 1H NMR spectral data and single-crystal X-ray structures of [Hg(HaaiEt)(μ-1,1-N3)2]n (4a) and [Hg(HaaiEt)4][Hg(SCN)4] (6a). The complex 4a is a coordination polymer with end-on (μ-1,1) azido bridge and 6a has tetrahedral structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号