首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of the electron-deficient triosmium cluster [Os3(CO)932-C9H6N)(μ-H)] (1) with various alkynes are described. Cluster 1 readily reacts with the activated alkyne dimethyl acetylenedicarboxylate (dmad) upon mild heating (65-70 °C) to give the adduct [Os3(CO)9(μ-C9H6N)(μ3-MeO2CCCHCO2Me)] (2). In contrast, a similar reaction of 1 with diphenylacetylene affords previously reported compounds [Os3(CO)10(μ-η2-C9H6N)(μ-H)] (3), [Os3(CO)9(μ-C4Ph4)] (4) and [Os3(CO)83-C(C6H4)C3Ph3}(μ-H)] (5) while with 2-butyne gives only the known compound [Os3(CO)7(μ-C4Me4)(μ3-C2Me2)] (6). The new cluster 2 has been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

2.
The SS bond-activation of diorganyl disulfide by the anionic metal carbonyl fragment [Mn(CO)5] gives rise to an extensive chemistry. Oxidative decarbonylation addition of 2,2′-dithiobis(pyridine-N-oxide) to [Mn(CO)5], followed by chelation and metal-center oxidation, led to the formation of [MnII(SC5H4NO)3] (1). The effective magnetic moment in solid state by SQUID magnetometer was 5.88 μB for complex 1, which is consistent with the MnII having a high-spin d5 electronic configuration in an octahedral ligand field. The average Mn(II)S, SC and NO bond lengths of 2.581(1), 1.692(4) and 1.326(4) Å, respectively, indicate that the negative charge of the bidentate 1-oxo-2-thiopyridinato [SC5H4NO] ligand in complex 1 is mainly localized on the oxygen atom. The results are consistent with thiolate-donor [SC5H4NO] stabilization of the lower oxidation state of manganese (Mn(I)), while the O,S-chelating [SC5H4NO] ligand enhances the stability of manganese in the higher oxidation state (Mn(II)). Activation of SS bond as well as OH bond of 2,2′-dithiosalicylic acid by [Mn(CO)5] yielded [(CO)3Mn(μ-SC6H4C(O)O)2Mn(CO)3]2− (4). Oxidative addition of bis(o-benzamidophenyl) disulfide to [Mn(CO)5] resulted in the formation of cis-[Mn(CO)4(SR)2] (R=C6H4NHCOPh) which was employed as a chelating metallo ligand to synthesize heterotrinuclear [(CO)3Mn(μ-SR)3Co(μ-SR)3Mn(CO)3] (8) possessing a homoleptic hexathiolatocobalt(III) core.  相似文献   

3.
[Pt5(μ-CO)5(CO)L4] (L = PPh31, PPh2Bz 2, AsPh33, PEt34, PCy35) have been synthesized by reacting [Pt3(μ-CO)3(PR3)3] with H2O2 (1 and 2), by reduction of cis-[PtCl2(CO)(PEt3)] with Zn dust (4), and by the Zn reduction of [Pt3(μ-CO)3(PCy3)3] in the presence of [PtCl2(CH3CN)2] (5). Complex 5 has not been observed previously and has been characterized by X-ray crystallography. Oxidation of the phosphine ligands with H2O2 is a new way to synthesize 1 and 2. The first complete NMR characterization of these complexes has also been achieved, and showed that these pentanuclear cluster complexes exhibit similar stereochemistries in solution and in the solid state. The observed 1JPt-Pt values do not have any correlation with the corresponding bond lengths, again pointing out the irregular behaviour of such parameter in Pt complexes.  相似文献   

4.
The cationic carbyne complex [Cp(CO)2MnCC6H5]BBr4 (1) reacts with PPN[Rh(CO)4] (2) to give the title cluster [(μ3-CC6H5)(μ-CC6H5) Rh2Mn2Cp2(μ-CO)3(CO)3] (3) whose structure has been determined by X-ray diffraction. The electrochemical properties of 3 have been investigated using cyclic voltammetric method. At 60 °C and 2.0 MPa of initial total CO/H2 (1:1) pressure, the catalytic activity of 3 towards hydroformylation of styrene has also been checked.  相似文献   

5.
6.
The reduction of ethanolic solutions of niobium pentachloride with zinc, followed by treatment with aqueous acids serves as a versatile entry into the aqueous solution chemistry of niobium. From the zinc-reduced solution, the major intermediate, Nb42-O)22-OC2H5)4Cl4(OC2H5)4(HOC2H5)4, was isolated and the crystal structure determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group Pccn, with Z=4, a=21.0105(9), b=11.0387(5), c=19.1389(8), V=4438.9(3) Å3, Mr=1090.19,R1=0.0327 and wR2=0.0876. The structure revealed a centrosymmetric tetrameric Nb(IV) complex, consisting of a pair of edge-sharing bi-octahedral Nb22-OC2H5)4Cl2(OC2H5)2(HOC2H5)2 units that are joined by two axial oxo ligands. The Nb-Nb distance of 2.7458(3) Å is consistent with a single metal-metal bond.  相似文献   

7.
《Inorganica chimica acta》2004,357(2):571-580
Treatment of the ligand N-(2-mercaptoethyl)-3,5-dimethylpyrazole with [Pd(CH3COO)2]3 and reaction of [PdCl(μ-med)]2 with pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 produced the following complexes: [Pd(CH3COO)(μ-med)]2, [Pd(μ-med)(py)]2(BF4)2 and [Pd(μ-med)(PPh3)]2(BF4)2. Similar reactions carried out with 2,2-bipyridine (bpy) or 1,3-bis(diphenylphosphino)propane (dppp) produced [Pd(μ-med)(bpy)]x(BF4)x (x=1 or 2) and [Pd(μ-med)(dppp)]x(BF4)x (x=1 or 2). Treatment of [Pd(μ-med)(bpy)]x(BF4)x with [PdCl2(CH3CN)2] produced [Pd3Cl2(μ-med)2(bpy)2](BF4)2. Treatment of [Pd(μ-med)(dppp)]x(BF4)x with [PdCl2(CH3CN)2] produced a mixture of [Pd(μ-Cl)(dppp)]2(BF4)2 and [Pd(μ-med)2(dppp)]2+. X-ray crystal structures of [Pd(μ-med)(PPh3)]2(BF4)2 · 2CH3CN and [Pd(μ-med)(bpy)]2(BF4)2 · 0.5CH3OH are presented.  相似文献   

8.
Reactions of orthometallated binuclear palladium complexes with NaER, obtained by NaBH4 reduction of R2E2 in methanol, gave complexes, [Pd2(μ-ER)2(CY)2] (HCY = N,N-dimethylbenzylamine (C6H5CH2NMe2), N,N-dimethylnaphthylamine (C10H7NMe2), tri-o-tolylphosphine {P(tol-o)3}; ER=SePh, SeMes, TePh, TeMes (Mes = 2,4,6-Me3C6H2). Similar reactions of [Pd2(μ-Cl)2(C10H6NMe2-C,N)2] with Pb(SMes)2 or MesSH in the presence of NaHCO3 gave chloro/thiolato-bridged complex [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2]. The newly synthesized complexes were characterized by elemental analysis, UV-Vis, IR, NMR (1H, 13C, 31P, 77Se, 125Te) spectroscopy. These complexes crystallized out preferentially in sym-cis configuration. A low energy charge transfer transition has been identified from chalcogenolate centers to an emptyπ orbital of cyclometallated ligand in absorption spectroscopy in these complexes. The structures of [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2] (1) and [Pd2(μ-SePh)2(C10H6NMe2-C,N) 2] (3) have been established by single crystal X-ray diffraction analyses. In the former, the two palladium atoms are held together by chloro and thiolato bridges whereas in the latter, the two phenylselenolato ligands bridge two palladium atoms. The pyrolysis of [Pd(μ-TeMes)(C10H6NMe2-C,N)]2 (10) in a furnace gave Pd7Te3 whereas thermolysis in TOPO afforded primarily PdTe2.  相似文献   

9.
The reaction of cyanamide and its derivatives with the (η5-C5H5)Mn(CO)2(THF) and (η5-C5H4CH3)Mn(CO)2(THF) complexes affords the cyanamide substituted complexes of types (η5-C5H5)Mn(CO)2(NCN(R′)(R″)) (2a-d) and (η5-C5H4CH3)Mn(CO)2(NCN(R′)(R″)) (3a-e). All complexes were characterized by spectroscopy (1H, 13C NMR, IR), elemental and mass spectroscopy analysis. Complex 2b5-C5H5)Mn(CO)2(NCN(CH3)2) was additionally examined by single crystal X-ray structure determination.  相似文献   

10.
The reactions of the triangulo-cluster [Pt3(μ-CO)3(PtBu3)3] with activated olefins and alkynes have been examined under various conditions. At low temperature, cluster fragmentation occurs yielding the Pt(0) complexes [Pt(CO)(PtBu3)(olefin)] (olefin = maleic anhydride and maleimide), while di(tert-butyl)acetylenedicarboxilate reacts quantitatively giving the dinuclear Pt(0) complex [Pt2(CO)2(PtBu3)2(μ-η22-tBuO2CCCCO2tBu)]. At higher temperature and in the presence of alkyne in large excess, the latter dimer converts quantitatively to the monomers [Pt(CO)(PtBu3)(alkyne)] (alkyne = CF3CCCF3 and tBuO2CCCCO2tBu). The stereochemistry of these complexes has been established by NMR and IR measurements. The structure of [Pt(CO)(PtBu3)(CF3CCCF3)] was confirmed by X-ray diffraction analysis.  相似文献   

11.
The U4+ cyclooctatetraenyl complex, [(C5Me5)(C8H8)U]2(μ-C8H8), 1, reacts with two equiv of 4,4′-dimethyl-2,2′-bipyridine (Me2bipy) and 2 equiv of 2,2′-bipyridine (bipy) to form 2 equiv of (η5-C5Me5)(η8-C8H8)U(Me2bipy-κ2N,N′) and (η5-C5Me5)(η8-C8H8)U(bipy-κ2N,N′), respectively. X-ray crystallography, infrared spectroscopy, and density functional theory calculations indicate that the products are best described as U4+ complexes of bipyridyl radical anions. Hence, only one of the (C8H8)2− ligands in 1 acts as a reductant and delivers 2 electrons per equiv of 1. Since the reduction potentials of uncomplexed (C8H8)2−, Me2bipy, and bipy are −1.86, −2.15, and −2.10 V vs SCE, respectively, it is likely that prior coordination of the bipyridine reagents enhances the electron transfer.  相似文献   

12.
Some novel hydrido-anions of general formula [Ir4H(CO)9(μ-L-L)] (L-L = Ph2PCH(CH3)PPh2, Ph2P(CH2)2PPh2, Ph2P(CH2)3PPh2 and Ph2AsCH2AsPh2) have been obtained by the reaction of [Ir4(CO)10(μ-L-L)] with the base 1,8-diazabicyclo[5.4.0]undec-7-ene in wet dichloromethane. According to IR and 1H, 31P and 13C NMR data at low temperature, these anionic derivatives display a single conformation in solution: three edge-bridging COs around the triangular basal face and both the hydride and the bidentate ligands located in axial positions relative to this face. The structures of four compounds were established by X-ray diffraction studies, which confirmed the configuration proposed on the basis of spectroscopic data.  相似文献   

13.
[Ir(η5-C5Me5)(C8H4S8)] (1) [ = 2-{(4,5-ethylenedithio)-1,3-dithiole-2-ylidene}-1,3-dithiole-4,5-dithionate(2−)] was reacted with iodine in dichloromethane to afford one-electron- and two-electron-oxidized species [IrI(η5-C5Me5)(C8H4S8)] (2), [IrI(η5-C5Me5)(C8H4S8)](I3) (3) and [IrI(η5-C5Me5)(C8H4S8)](I5) (4). The oxidized species exhibit electrical conductivities of (1.1-5.0) × 10−6 S cm−1 measured for compacted pellets at room temperature. The X-ray crystal structures of the two-electron-oxidized complexes 3 and 4 revealed the Ir-I bonds for both of them and the presence of for 3 and ions for 4 as the counter anions. They have many S-S and S-I non-bonding contacts to form two-dimensional molecular interaction sheets in the solid state.  相似文献   

14.
Reaction of [Pt2(μ-S)2(PPh3)4] with a number of transition metal-iodo complexes leads to the formation of the cationic iodo analogue [Pt2(μ-S)(μ-I)(PPh3)4]+, identified using electrospray ionisation mass spectrometry (ESI MS). Synthetic routes to this complex were developed, using the reaction of [Pt2(μ-S)2(PPh3)4] with either [PtI2(PPh3)2] or elemental iodine. The complex was characterised by NMR spectroscopy, ESI MS and an X-ray structure determination, which reveals the presence of a planar, disordered {Pt2SI}+ core. Monitoring the iodine reaction by ESI MS allows the identification of various iodine species, including the short-lived intermediate [Pt2(μ-S)2(PPh3)4I]+, which allows a mechanism for the reaction to be proposed.  相似文献   

15.
A three-dimensional polymeric KITlI heterometallic compound [K2Tl(μ-C4H4O4)(μ-NO3)]n, with mixes succinate and nitrate ligands, has been synthesized and characterized. Its single-crystal X-ray structure shows two types of K+-ions with coordination numbers of seven and eight and one Tl+-ion with a coordination number of five. However, the arrangement of O-atoms for TlI suggests a gap or hole in the coordination geometry around this atom. This ‘hole’ is possibly occupied by a stereochemically ‘active’ electron lone pair of thallium atoms. Two hydrogen atoms of succinate situated 3.26 Å above the proposed site on the lone pair of TlI is oriented in such a way that it might be thought to be forming weak Tl-Lp?H-C hydrogen bond or agostic interactions, thus attaining of environment TlO5H2.  相似文献   

16.
The 86-electron dicationic octahedral rhodium clusters containing Cp (Cp = C5H5) ligands and either an interstitial carbon atom, [Rh6Cp66-C)]2+ ([1]2+), or two carbonyl groups, [Rh6Cp63-CO)2]2+ ([2]2+), were synthesized in low yields by reactions of Rh3Cp3(μ-CO)3 with RhCp(C2H4)2 or [RuCp(MeCN)3]+ (Cp = C5Me5), respectively. The structures of [1]2+ and [2]2+ were determined by X-ray diffraction. Their electrochemical behavior proved that they possess a rather extended electron transfer activity. In accordance with DFT calculations, the nearly octahedral structure of [1]2+ and [2]2+ is retained both upon oxidation (2+/3+) and the first reduction (2+/+); however, the second reduction (+/0) results in the breaking of one (for [1]0) or two (for [2]0) Rh-Rh bonds. In the case of the related Dahl’s nickel cluster Ni6Cp6 the nearly octahedral structure is retained upon all redox steps (3+/2+/+/0/−/2−).  相似文献   

17.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

18.
Bi-nuclear neutral sulfur-nitrosyl iron complex [Fe2(SR)2(NO)4] (I) has been obtained by replacement of thiosulfate ligands in dianion [Fe2(S2O3)2(NO)4]2− by 1-methyl-imidazole-2-yl. From X-ray analysis data, the complex has centrosymmetrical dimeric structure, with the iron atoms being linked via μ-N-C-S bridge. From Mossbauer spectroscopy, isomeric shift δFe is 0.180(1) mm/s and quadrupole splitting ΔEQ is 0.928(2) mm/s at T = 290 K. By comparative studying the mass-spectra in the gaseous phase of solid samples decomposition and kinetics of NO release in 1% aqueous solutions of dimethylsulfoxide, using of the ligand with CH3 substituent in position 1 of imidazole-2-thiol was shown to yield a more stable donor of nitrogen monoxide than earlier obtained analog with imidazole-2-thiol, [Fe2(C3H3N2S)2(NO)4].  相似文献   

19.
The synthesis of palladacyclopentadiene derivatives with the mixed-donor bidentate ligands o-Ph2PC6H4CHNR (NP) has been achieved. The new complexes of general formula [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNR)] [R=Me (1), Et (2), iPr (3), tBu (4), NHMe (5)] have been prepared by reaction between the precursor [Pd{C4(COOMe)4}]n and the corresponding iminophosphine. The polymer complex [Pd{C4(COOMe)4}]n also reacts with pyridazine (C4H4N2) to give the insoluble dinuclear complex [Pd{C4(COOMe)4}(μ-C4H4N2)]2 (6), which has been successfully employed as precursor in the synthesis of pyridazine-based palladacyclopentadiene complexes. The reaction of 6 with tertiary phosphines yielded complexes containing an N,P-donor setting of formula [Pd{C4(COOMe)4}(C4H4N2)(L)] (L=PPh3 (7), PPh2Me (8), P(p-MeOC6H4)3 (9), P(p-FC6H4)3 (10)). The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, 1H, 19F and 31P NMR). The molecular structure of complex 3 has been determined by a single-crystal diffraction study, showing that the iminophosphine acts as chelating ligand with coordination around the palladium atom slightly distorted from the square-planar geometry.  相似文献   

20.
The new trans-hyponitrite derivative complex [Ru2(CO)4(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)] (2, dppm = Ph2PCH2PPh2) was prepared by deprotonation of [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)][BF4] (1) with the base DBU (1.8-diazabicyclo[5.4.0]undec-7-ene). The latter complex salt has been obtained in an improved synthesis starting from the trans-hyponitrite complex [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNO)]. Compound 2 has been characterized by spectroscopic methods as well as by X-ray diffraction and represents the first neutral complex bearing a deprotonated monoester of the hyponitrous acid as the bridging ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号