首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dihydroxybenzenes(DHB)-driven Fenton reaction was found to be more efficient than a simple Fenton reaction based on OH radical and activated species production. The reason for this enhanced reactivity by [Fe DHB] complexes is not well understood, but results suggest that it may be explained by the formation of oxidation species different from those formed during the classic Fenton reactions. In previous work, greater concentrations, and more sustained production of OH over time were observed in DHB driven Fenton reactions versus neat Fenton and Fenton-like reactions. In this work, chemiluminescence (CL) was monitored, and compared to OH production kinetics. The CL of the DHB-driven Fenton reaction was shorter than that for sustained production of OH. CL appears to have been caused by excited Fe(IV) species stabilized by the DHB ligands initially formed in the reaction. Formation of this species would have to have occurred by the reaction between OH and Fe(III) in a DHB complex.  相似文献   

2.
3.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

4.
The hydroxyl radical (OH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on OH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of OH radical formation decreased in the order F16BP > F1P > F6P > fructose > mannitol = glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber-Weiss-like system was also employed to generate OH, so that the effect of iron sequestration could be distinguished from direct OH radical scavenging. In the latter system, the rank order of OH scavenging activity was F16BP > F1P > F6P > fructose = mannitol = glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body’s reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.  相似文献   

5.
The electron transport chain of mitochondria is a major source of reactive oxygen species (ROS), which play a critical role in augmenting the Ca2+-induced mitochondrial permeability transition (MPT). Mitochondrial release of superoxide anions (O2) from the intermembrane space (IMS) to the cytosol is mediated by voltage dependent anion channels (VDAC) in the outer membrane. Here, we examined whether closure of VDAC increases intramitochondrial oxidative stress by blocking efflux of O2 from the IMS and sensitizing to the Ca2+-induced MPT. Treatment of isolated rat liver mitochondria with 5 μM G3139, an 18-mer phosphorothioate blocker of VDAC, accelerated onset of the MPT by 6.8 ± 1.4 min within a range of 100-250 μM Ca2+. G3139-mediated acceleration of the MPT was reversed by 20 μM butylated hydroxytoluene, a water soluble antioxidant. Pre-treatment of mitochondria with G3139 also increased accumulation of O2 in mitochondria, as monitored by dihydroethidium fluorescence, and permeabilization of the mitochondrial outer membrane with digitonin reversed the effect of G3139 on O2 accumulation. Mathematical modeling of generation and turnover of O2 within the IMS indicated that closure of VDAC produces a 1.55-fold increase in the steady-state level of mitochondrial O2. In conclusion, closure of VDAC appears to impede the efflux of superoxide anions from the IMS, resulting in an increased steady-state level of O2, which causes an internal oxidative stress and sensitizes mitochondria toward the Ca2+-induced MPT.  相似文献   

6.
7.
8.
Electrochemical oxidation of [RuII(terpy)(sq)(NH3)]+ in neutral water (pH 8.0) at +0.8 V (versus SCE) generated [RuII(terpy)(q)(NH2)]2+ and/or [RuIII(terpy)(sq)(NH2)]2+ (terpy = 2,2′:6′,2′′-terpyridine, sq = 3,5-di-tert-butyl-1,2-semiquinonate, q = 3,5-di-tert-butyl-1,2-benzoquinone), which played roles in hydrogen abstraction and one-electron acceptor in the catalytic oxidation of methanol, ethanol, and 2-propanol affording formaldehyde, acetoaldehyde, and acetone, respectively, under the electrolysis conditions.  相似文献   

9.
In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH) and singlet oxygen (1O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 °C). Production of OH, evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH production. These observations reveal that OH is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH, whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH scavengers. This finding indicates that the production of these two species was independent and that the production of 1O2 is not closely linked to PSII donor side.  相似文献   

10.
Pentachloronitrosyliridate(III) ([IrCl5(NO)]), the most electrophilic NO+ known to date, can be reduced chemically and/or electrochemically by one or two electrons to produce the NO and HNO/NO forms. The nitroxyl complex can be formed either by hydride attack to the NO+ in organic solvent, or by decomposition of iridium-coordinated nitrosothiols in aqueous solutions, while NO is produced electrochemically or by reduction of [IrCl5(NO)] with H2O2. Both NO and HNO/NO complexes are stable under certain conditions but tend to labilize the trans chloride and even the cis ones after long periods of time. As expected, the NO+ is practically linear, although the IrNO moiety is affected by the counterions due to dramatic changes in the solid state arrangement. The other two nitrosyl redox states comprise bent structures.  相似文献   

11.
The binuclear complex [(μ-Me2BPTZ)(Re(CO)3Cl)2] (1), where Me2BPTZ = 3,6-(5-methyl-pyridyl)-1,2,4,5-tetrazine, can be reduced by addition of bis(η5-pentamethylcyclopentadienyl) iron(II) (decamethylferrocene, Fc), to obtain a stable radical anion form 1. A single-crystal X-ray diffraction study of the radical anion (1)(Fc∗+) was conducted and compared with a computational model of the same compound in the neutral and reduced states. As such, this work presents the first structural analysis of a reduced diimine ligand that is coordinated to {Re(CO)3Cl} moieties. Bond-length changes within the tetrazine ring system were consistent with previously reported examples of tetrazine radicals and with calculated structures that show clear elongation of the azo-type NN bond. Consistently atomic charge calculations indicate that the extra electron in the radical anion resides largely at the tetrazine core. A negligible change in the Re-Cl bond length is observed and computed.  相似文献   

12.
In an unusual reaction of [RuIII(acac)2(CH3CN)2](ClO4) ([1], acac = acetylacetonate) and aniline (Ph-NH2), resulted in the formation of ortho-semidine due to dimerisation of aniline via oxidative ortho-Carom-N bond formation reaction. This oxidation reaction is associated with stepwise chlorination of coordinated acac ligands at the γ-carbon atom resulting in the formation of [RuIII(acac)2L] [2a], [RuIII(Cl-acac)(acac)L] [2b], [RuIII(acac)(Cl-acac)L] [2c] and [RuIII(Cl-acac)2L] [2d] (L = N-phenyl-ortho-semiquinonediimine) complexes, respectively. These have been characterized by 1H NMR, UV-Vis-NIR, ESI-MS and cyclic voltammetry studies. Single crystal X-ray structures of 2c and 2d are reported. Crystallographic structural bond parameters of 2c and 2d revealed bond length equalization of C-C, C-O and M-O bonds. It has been shown that perchlorate () counter anion, present in the starting ruthenium complex, acts as the oxidizing agent in bringing about oxidation of Ph-NH2 to ortho-semidine. The chloronium ions, produced in situ, chlorinate the coordinated acac ligands at the γ-carbon atom. Such electrophilic substitution of coordinated acac ligands indicates that the Ru-acac metallacycles in the reference compounds are aromatic. The complexes showed an intense and featureless band centered near 520 nm, and a structured band near 275 nm. These displayed one reversible cathodic response in the range, −1.1 to −0.8 V and one reversible anodic response between 0.4 and 0.6 V versus the Saturated Calomel reference Electrode, SCE. The response at the anodic potential is due to oxidation of the coordinated ligand L, while the reversible response at cathodic potential is due to reduction of the metal center.  相似文献   

13.
The platinum(0) complex [Pt(PPh3)4] reacts with brominated propargylic amides and esters in benzene by oxidative addition to give trans-[Br(PPh3)2Pt-CC-C(O)R] complexes whereas no reaction occurs when halogenated solvents (CH2Cl2, CHCl3) are used. The cis-ligands PPh3 can be replaced by P(iPr)3 and the bromide by trifluoroacetate. O-Alkylation of those trans-[X(PR′3)2Pt-CC-C(O)R] complexes (X = Br, CF3COO; R′ = Ph, iPr) derived from propargylic amides with MeOTf or [Me3O]BF4 in CH2Cl2 gives the first cationic monoallenylidene complexes of platinum, trans-[X(PR′3)2PtCCC(OMe)NR2]+Y (Y = OTf, BF4). In contrast, trans-[Br(PPh3)2Pt-CC-C(O)OMenthyl] derived from a propargylic ester does not react with MeOTf in CH2Cl2. However, in acetonitrile instead of O-methylation the substitution of acetonitrile for the bromide ligand to yield the cationic acetonitrile alkynyl platinum complex trans-[MeCN(PPh3)2Pt-CC-C(O)OMenthyl]+OTf is observed. The related palladium complexes trans-[X(PR′3)2Pd-CC-C(O)OR] (X = Br, CF3COO; R′ = Ph, iPr, R = menthyl, Et) react with MeOTf or [Et3O]BF4 analogously affording trans-[MeCN(PR′3)2Pd-CC-C(O)OR]+Y (Y = OTf, BF4).  相似文献   

14.
Two new o-aminothiophenol type ligands have been synthesized, namely 1,3-propanediamine-N,N′-bis(benzenethiol), H4(1L), and 1,2-bis(2-mercapto-3,5-di-tert-butylaniline)ethane, H4(2L). The reactions of these ligands with FeBr2 in dry acetonitrile in the presence and absence of air (and other oxidants such as iodine) afforded seven new complexes which were characterized by single-crystal X-ray crystallography and Mössbauer spectroscopy (as well as EPR- and UV-Vis spectroscopies). Their magnetochemistry has been studied and their electronic structures have been established and verified by broken symmetry (BS) density functional theoretical (DFT) calculations using the B3LYP functional. The ligands are redox-active and the o-iminothiophenolate(2-)-o-iminothiobenzosemiquinonate(1-) oxidation levels are chemically readily accessible. The complexes characterized comprise the dimers [FeIII(1L)]2 (ST = 0) (1); [FeIII(2L)]2 (ST = 0) (2), and the mononuclear, five coordinate species: [FeIII(1L)I] (ST = 1/2) (3); [FeIII(2L)I] (ST = 1/2) (4); [FeII(1L){P(CH3)3}] (ST = 0) (5); [FeII(2L){P(C6H5)3}] (ST = 0) (6), and [FeIII(2)(tpy)] (ST = 1) (7). (tBupy) represents 4-tert-butylpyridine and (2)3− is the π radical trianion of the one-electron reduced (2Lgma)2− which in turn is the oxidized form of (2L)4− (−4H+, −2e).  相似文献   

15.
A small series of half-sandwich bis(phosphine) ruthenium acetylide complexes [Ru(CCC6H4CCSiMe3)(L2)Cp′] and [Ru(CCC6H4CCC6H4R-4)(L2)Cp′] (R = OMe, Me, CO2Me, NO2; L2 = (PPh3)2, Cp′ = Cp; L2 = dppe; Cp′ = Cp) have been synthesised. One-electron oxidations of these complexes gave the corresponding radical cations, which were significantly more chemically stable in the case of the Ru(dppe)Cp derivatives. The representative complex [Ru(CCC6H4CCC6H4OMe-4)(dppe)Cp] was further examined by spectroelectrochemical (IR and UV-Vis-NIR) methods. The results of the spectroelectrochemical studies, supported by DFT calculations, indicate that the hole is largely supported by the ‘RuCCC6H4’ moiety in a manner similar to that described previously for simple aryl ethynyl complexes, rather than being more extensively delocalized along the entire conjugated ligand.  相似文献   

16.
17.
18.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

19.
The mechanism of the RuCp(COD)Cl catalyzed cyclotrimerization of acetylene, as well as the cyclocotrimerization of two alkynes with one molecule of ethylene, R-CN (R = H, Me, Cl, COOMe), CX2 (X = O, S, Se), and HNCX (X = O, S) investigated by means of high level DFT/B3LYP calculations, has been reviewed. The key reaction step is in all cases the oxidative coupling of two alkyne ligands to give a metallacyclopentatriene intermediate (or metallacyclopentadiene in other systems). This metallacycle adds unsaturated molecules, containing CC, CC and CX bonds, or RCN, CX2, and HNCX, in a concerted fashion, directly to the RuC bond, forming bicyclic carbenes. The cycle is completed by a rearrangement followed by an exothermic displacement of the arene or pyridine, by two acetylene molecules regenerating the catalytically active species. Small differences are found depending on the molecules and bonds involved. These reactions are reviewed and the proposed mechanisms compared with other available studies.  相似文献   

20.
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (PM, F and F) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F but when F is generated with hydrogen peroxide, is always accompanied by the narrow radical. When PM is produced at high pH with CO/O2, no EPR-detectable radicals are formed. Conversion of the CO/O2-generated PM into F when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F determined optically. It is concluded that low pH causes a change of protonation pattern in PM which induces partial electron redistribution and tryptophan cation radical formation in F. These protonation changes may mimic a key step of the proton translocation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号