首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg–1) or low (40 µg g–1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis  相似文献   

2.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

3.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and harvested at intervals over and88 d growht period. The swards received a nutrient solutiondaily, which was either High (220 mg l1) or Low (10 mgl–1) in nitrate N. The nitrate was labelled with the 15Nisotope. An acetylene reduction assay was carried out on eachsward just prior to harvest. Rates of acetylene reduction agreed qualitatively with the l5Nanalyses but absolute values did not match (assuming a 4:1 C2H4:N2ratio) and errors in the acetylene assay are discussed. In theLow-N swards clover relied almost entirely on symbioticallyfixed N2, fixing more than ten times as much as the High-N cloverplants. In the Low-N treatment the grass was N-deficient despiteobtaining much more nitrate per unit root dry weight than clover.In the High-N swards, however, clover took up more nitrate perunit root weight than grass. The High-N clover plants also fixedsome N2 and maintained a higher total-N content than grass throughoutthe period. There was no evidence of transfer of symbioticallyfixed N from the clover to the grass in either treatment. Trifolium repens, Lolium perenne, nitrate, nitrogen fixation, 15N, acetylene reduction  相似文献   

4.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

5.
By direct somatic embryogenesis in vitro a clone of asepticplantlets can be raised from a single immature embryo of Trifoliumrepens (white clover) within about 6 weeks of pollination. Embryoidsare induced directly from intact zygotic embryonic tissue ona culture medium containing 0·025 or 0·05 mg 1–1BAP and 1·0 g 1–1 yeast extract. Similar directsomatic embryogenesis has also been achieved for Trifolium pratense(red clover) and Medicago sativa (lucerne). Applications ofembryo propagation by direct somatic embryogenesis are discussed,particularly in relation to multiple screening of host genotypesfor analysis of host/pathogen and legume/Rhizobium interactions. Trifolium repens L., Trifolium pratense L., Medicago sativa L., clover, lucerne, tissue culture, embryoid, somatic embryogenesis, legumes  相似文献   

6.
The net efflux of H+ from lucerne (Medicago saliva L.), redclover (Trifolium pratense L.) and white clover (Trifolium repensL.) growing in flowing solution culture and dependent upon symbioticfixation of atmospheric N, was measured over a 75 d experimentalperiod. Considerable and rapid increases in acidity of the nutrientsolution of up to 1.45 pH units were recorded when the pH wasriot held constant over a 30 h period. There was little differencein H+ efflux when solution pH was held constant at 4.75, 5.75or 6.75, but there was an immediate cessation when it was adjustedto 3.75. Differences in the daily net efflux of H+ closely followedthe pattern of daily differences in incoming radiation, andthere was also evidence of a diurnal pattern of H+ efflux. Althoughthere were initially distinct differences between the speciesin the calculated rate of net H+ efflux (µg H+ g–1dry shoot d), by day 75 these had diminished. In allspecies, however, the maximum rate of efflux per unit of shootsoccurred during the earlier rapid phases of growth. The measuredefflux of H+ was well equated with the plant content of excesscations (as measured by ash alkalinity) and, on average, theratio of acidity produced to N assimilated (expressed as anequivalent) was 0-24. Medicago sativa L., Trifolium pratense L., Trifolium repens L., lucerne, red clover, white clover, acidification, cation/anion balance, flowing solution culture, H+ efflux, nitrogen fixation  相似文献   

7.
NORRIS  I. B. 《Annals of botany》1985,56(3):317-322
Effects of temperature on floral initiation of ten white clovervarieties growing in controlled environments are described.Plants grown under long days (16 h) were subjected to constanttemperatures of 26, 18 and 10 °C. Relationships betweenmorphological and physiological traits and flowering were examined. Most plants flowered at the two higher temperatures but only10 per cent of plants flowered at 10 °C. Larger leaved typestended to produce more reproductive buds per stolon at the highertemperatures than did smaller leaved varieties. Of the floral characters studied, floret number was least affectedby temperature. Ovule number and peduncle length were greatestat 18 °C. Variation in, and absolute level of nectar secretionwas greatest at the highest temperature. Trifolium repens, white clover, flowering, temperature  相似文献   

8.
White clover (Trifolium repens L.) was grown in controlled environmentsto determine the distinct effects of root and shoot temperatureon the accumulation of total and fixed (15 N dilution) nitrogenat two levels of nitrate (10 and 75 mM). Nitrogen fixation(BNF) showed a positive response to higher shoot temperature(23 vs. 13 C day temperature), irrespective of whether or notroot temperature was increased in parallel. Low root temperature(5 C) caused a marked reduction in the accumulation of totalnitrogen at both nitrate levels, and led to a lower proportionof N derived from BNF. The temperature response of BNF was attributedfor the major part to an adaptation to the demand for fixedN. It is therefore concluded that BNF is not primarily responsiblefor the reduced clover growth at low temperatures. White clover, Trifolium repens L., temperature, nitrogen fixation, nitrate, root, shoot  相似文献   

9.
Large turves from a ryegrass/white clover based pasture wereexposed to 350 or 700 µl l-1 CO2 for a period of 217 din controlled environment rooms. The temperature was increasedduring the experiment from 10/4 °C day/night to 16/10 °Cand finally to 22/16 °C. The turves were cut to a heightof 2 cm at intervals and growth rates calculated from the regrowth. Growth rates over the duration of the experiment were 8% higherat elevated CO2; the difference between CO2 treatments beingstatistically significant only at the highest temperature. Speciescomposition of the turves at 350 µl l-1 CO2 showed seasonalchanges similar to those measured in the field. The effect ofCO2 was to exaggerate the normal decline of ryegrass at warmertemperatures and increase the proportion of white clover. About30% of the total growth rate was from other species (notablyBromus hordeaceus L. and Poa trivialis L.) and this fractionwas similar between CO2 levels. Root mass was measured at theend of the experiment and was 50% higher at elevated CO2. The modest above-ground response to CO2 was a result of CO2stimulation occurring only at the higher temperature. Becauseof the CO2 x temperature interaction, the effect of CO2 in temperateregions will be seasonal. When this is matched with seasonalgrowth patterns of herbage species, a complex response of pasturecommunities to CO2 is possible. In our case, white clover wasgrowing most strongly during the period of greatest CO2 stimulationand consequently its growth was enhanced more than that of ryegrass;however, the cooler season growth of ryegrass gives it a temporalniche which is little affected by CO2 and this may be importantfor ryegrass stability if it is an inherently poor responderto CO2. The results indicate that for temperate species theeffects of competition at elevated CO2 cannot be easily determinedfrom experiments conducted at a single temperature.Copyright1994, 1999 Academic Press CO2 enrichment, seasonal growth, species composition, turves, Trifolium repens L., Lolium perenne L., climate change  相似文献   

10.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

11.
A closed system flow-through enclosure apparatus was constructedand used to enclose mixtures ofLolium perenne L. (perennialryegrass cv. Trani) and nodulatedTrifolium repens L. (whiteclover cv. Blanca) growing in soil in pots. There were no significantdifferences between the shoot growth, in terms of dry matteraccumulation and nitrogen content, of mixtures in the systemcompared to that of mixtures grown in a standard growth cabinet.This demonstrated that stable ambient conditions could be achievedby the closed system and its control circuits and that therewere no apparent side-effects of the recirculatory gases.Reducingthe partial pressure of dinitrogen in the atmosphere affectedwhite clover, but not perennial ryegrass. A fairly rapid effectwas observed 4 h after reduction in dinitrogen partial pressureas some of the clover leaves folded downwards along the petiole.These same effects were observed at two different partial pressuresof dinitrogen (22% and 39%) and with two different replacementgases (argon and helium). In the longer term (11 to 16 d) drymatter accumulation and nitrogen content of the clover shootswere significantly reduced. These effects of reduced partialpressure of dinitrogen were observed in both nodulated (NOD+)and nitrate-dependent (NOD) clover. Possible reasonsfor these effects were discussed with particular reference toimpurities in the gases used, stomatal responses and plant waterrelations. It was concluded that the closed system flow-throughapparatus provides a useful tool for studying whole plant-soilsystems and, in particular, the cycling of nitrogen. However,the use of a replacement gas to reduce the cost of labelleddinitrogen was obviously not a viable proposition. Key words: Dinitrogen, flow-through system, Lolium perenne, partial pressure, Trifolium repens  相似文献   

12.
The rate of photosynthesis of leaves of perennial ryegrass (Loliumperenne L.) and white clover (Trifollum pratense L.) grown atdifferent temperatures was measured at a range of temperatures.There was a small effect of the temperature at which a leafhad grown on its photosynthetic rate, but a large effect ofmeasurement temperature, especially in bright light, where photosyntheticrates at 15°C were about twice those at 5°C. It appearsthat temperature could affect sward photosynthesis in the field.Ryegrass and clover had similar photosynthetic rates which respondedsimilarly to temperature. Lolium perenne L., ryegrass, Trifolium pratense L., white clover, photosynthesis, temperature, irradiance  相似文献   

13.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

14.
The application of nitrogenous fertilizer in March to a whiteclover (cv. Blanca) and perennial ryegrass (cv. S23) sward resultedin a rapid suppression of the clover, relative to clover ina treatment given no added nitrogen. Thereafter, the cloverin both treatments grew more rapidly than the grass and itsproportion of the total leaf area in the mixture increased,as the leaf area index rose to 8. After a second applicationof N in early July, clover was not suppressed to the same extentas in the first growth period. Overall, the photosynthetic capacities of newly expanded cloverlaminae were similar in the two treatments. Clover laminae hadhigher photosynthetic capacities than grass, even in the grass-dominant+ N treatment. Lamina area, petiole length, and the number of live leaves perstolon were similar in the two treatments, indicating that thedifferences in total leaf area were due to the presence of fewerstolon growing points in the + N treatment. Trifolium repens L., white clover, Lolium perenne L., perennial ryegrass, nitrogen, leaf area index, photosynthesis, growth  相似文献   

15.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

16.
White clover (Trifolium repens L.) plants were grown from seedin perlite, inoculated with effective rhizobia and exposed tothe same ‘concentration x days’ of 15N-labellednitrate in four contrasting patterns of doses. Acetylene reductionwas measured at intervals using an open, continuous-flow sytem.Mean dry weight per nodule and rates of acetylene reductionfell rapidly (2–3 d) during periods of exposure to highnitrate concentrations (> 7 mM N) and rose again, equallyrapidly, when nitrate was withdrawn or substantially reduced.The fall in mean dry weight per nodule (50–66 per cent)was almost certainly too large to be accounted for by loss ofsoluble or storage carbohydrate only. No new nodules were formedduring periods of high nitrate availability. When nitrate wassupplied continuously at a moderate concentration (5.7 mM N)nodule numbers stabilised although existing nodules increasedin dry weight by almost four-fold over the 30 d measurementperiod. Treatment had no effect on the percentage nitrogen in planttissues although there were large differences in the proportionsderived from nitrate and N2-fixation. Plants exposed continuouslyor frequently to small doses of nitrate took up more nitrate,and hence relied less heavily on N2-fixation, than those exposedto larger doses less often. Increased reliance on nitrate broughtwith it increased total dry weight and shoot: root ratios. Possiblemechanisms involved in bringing about these differences in nitrogennutrition and growth are discussed. White clover, Trifolium repens, nitrate, N2-fixation, nodule, acetylene reduction, 15N  相似文献   

17.
Single plants of white clover (Trifolium repens) were establishedfrom stolon cuttings rooted in acid-washed silver sand. Allplants were inoculated with Rhizobium trifolii, and receivednutrient solution containing 0·5 mg 15N as either ammoniumor nitrate weekly for 12 weeks (i.e. 6 mg 15N in total). Plantswere then leniently defoliated or left intact, and the labelledN supply was replaced with unlabelled N. Lenient defoliationremoved fully expanded leaves only, leaving immature leaveswhich accounted for 50–55% of the total; growing pointnumbers were not reduced. Nodules, leaves and growing pointswere counted over the following 21 d period, and d. wts, N contents,and 15N enrichments of individual plant organs were determined. Defoliated plants had fewer nodules, but numbers of growingpoints were unaffected by defoliation. The rates of both leafemergence and expansion were accelerated in defoliated plants;in consequence the number of young leaves remained less thanin intact plants until day 21. Total dry matter (DM) and N accumulationwere less in defoliated plants, and a greater proportion oftotal plant DM was invested in roots. About 97 % of plant totalN was derived from fixed atmospheric N, but there was incompletemixing of fixed and mineral N within the plant. Relatively moremineral N was incorporated into roots, whereas there was relativelymore fixed N in nodules. There was isotopic evidence that Nwas remobilized from root and stolon tissue for leaf regrowthafter defoliation; approximately 2 % of plant N turned overdaily in the 7-d period after defoliation, and this contributedabout 50% of the N increment in leaf tissue. White clover, Trifolium repens L. cv. SI84, lenient defoliation, N economy, regrowth, N remobilization  相似文献   

18.
Radiation Interception, Partitioning and Use in Grass -Clover Mixtures   总被引:2,自引:0,他引:2  
Mixed swards of perennial ryegrass /white clover were grownin competition under controlled environmental conditions, attwo temperatures and with different inorganic nitrogen supplies.The swards were studied after canopy closure, from 800 to 1200°C d cumulative temperatures. Clover contents did not varysignificantly during the period. A simulation model of lightinterception was used to calculate light partitioning coefficientsand radiation use efficiencies for both components of the mixturein this controlled environment experiment. Additionally, thissame radiative transfer model was applied to the field datafrom Woledge (1988) (Annals of Applied Biology112: 175 –186)and from Woledge, Davidson and Dennis (1992) (Grass and ForageScience47: 230 –238). The measured and simulated valuesof light transmission, at different depths in the mixed canopy,were highly correlated (P<0.001) with more than 80% of thetotal variance explained. The daily average of photosyntheticallyactive radiation (PAR) interception in a natural environmentwas estimated from simulations, for the field and controlledenvironment data. Under these conditions, white clover capturedsignificantly more light per unit leaf area than perennial ryegrassat low, but not at high, nitrogen supply. In the controlled environment experiment, the radiation useefficiency of the legume was lower than that of its companiongrass. For both species, radiation use efficiency was negativelycorrelated with the mean irradiance of the leaf. The role ofa compensation between light interception and light use forstabilizing the botanical composition of dense grass –cloverswards is discussed. Light interception; radiation transfer model; growth analysis; radiation use efficiency; white clover; perennial ryegrass; Trifolium repensL.; Lolium perenneL.; grassland  相似文献   

19.
Boller  B. C.  Nösberger  J. 《Plant and Soil》1988,112(2):167-175
The temporal N-uptake patterns of white clover (Trifolium repens L.) mixed with perennial ryegrass (Lolium perenne L.) and of red clover (Trifolium pratense L.) mixed with Italian ryegrass (Lolium multiflorum Lam.) were determined in successive harvests of herbage within the growth cycles of a ley established near Zürich (Switzerland). Rooting patterns were examined by injecting15N-fertilizer at soil depths ranging from 10 to 40 cm. The results were analyzed to determine the effect of variations in time and depth of N-uptake on the15N-based measurement of N from symbiosis (Nsym) and N from transfer (Ntrans).Grasses in mixture appeared to have deeper rooting systems than grass monocultures, which led to an overestimation of N transfer from white clover to perennial ryegrass if15N was spread on the soil surface.White clover generally lagged behind grass in soil N- uptake. Soil N-uptake of red clover slowed down before that of the grass because % Nsym almost reached 100% during the second half of each growth cycle. However, the effect of these dissimilarities on the seasonal average of %Nsym did not exceed 2%.It is concluded that at the observed high levels of N2 fixation, failure to account for the N-uptake patterns of the test and reference crops only slightly affected the estimates of % Nsym and % Ntrans, and did not invalidate the observed differences between species.  相似文献   

20.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号