首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The big (Raja binoculata), California (R. inornata), longnose (R. rhina), and sandpaper (Bathyraja kincaidii), skates are commonly found on soft-bottom regions of the central California continental shelf and upper slope. The feeding ecology of this assemblage was compared to evaluate the degree of trophic separation among species, based on the results of previous species-specific diet studies. Specimens were collected from fishery independent trawl surveys conducted during September 2002–March 2003 at depths of 9–536 m. Using single and compound measures, diet composition of small (≤60 cm TL) and large (>60 cm TL) individuals were compared within continental shelf (≤200 m) and slope (>200 m) regions using traditional, multivariate, and novel techniques. Diet compositions within size classes were similar in both regions. Diet compositions between size classes generally differed, however, with fishes more important and crustaceans (especially shrimps and euphausiids) less important in the diets of large individuals. Crabs contributed substantially to skate diet compositions on the shelf, but were uncommon prey items at deeper depths, probably because of their relative scarcity in slope waters. Conversely, cephalopods were common prey items at slope depths, but were rarely ingested at shelf depths. The studied skate assemblage appears to consist primarily of generalist crustacean and fish predators that exhibit high dietary overlap at similar sizes. It is possible that resource competition among skates and groundfish species has been reduced because of considerable recent declines in the biomass of upper trophic level groundfishes. Skates may therefore play important roles in contemporary benthic food web dynamics off central California.  相似文献   

3.
4.
Sharks segregate by sex and size, but few studies have attempted to explain such behaviors. To address this, we examined aggregations and the foraging ecology of whale sharks in Bahía de La Paz (BLP) with aerial and ship surveys and direct observation. Zooplankton abundance and composition, and hydrographic conditions were analyzed in relation to whale shark occurrence to explore underlying factors causing segregations. We observed large aggregations of juveniles (<9 m total length, TL) inshore, comprised by 60 % male individuals, and small aggregations of adults (>9 m TL) offshore, composed of 84 % females. Juvenile sharks were associated to turbid shallow waters in BLP, where they performed stationary and dynamic suction feeding on dense copepod swarms. Adults occurred in oceanic waters and fed by ram-filtering on diffuse patches of euphausiids, with no association to oceanographic conditions. Such segregation may be advantageous to juvenile R. typus utilizing shallow coastal waters to find abundant preferred prey needed for their fast growth rates. Our studies suggest that the main driving forces of whale shark segregation by sex and size in BLP may be diet preference for juveniles and habitat preference for adult sharks.  相似文献   

5.
The shortfin mako, Isurus oxyrinchus, is caught in the eastern North Atlantic as a regular bycatch of the surface-drift longline fishery, mainly directed towards swordfish, Xiphias gladius. Stomachs of 112 shortfin mako sharks, ranging in size from 64 cm to 290 cm fork length, showed teleosts to be the principal component of the diet, occurring in 87% of the stomachs and accounting for over 90% of the contents by weight. Crustaceans and cephalopods were also relatively important in this species’ diet, whereas other elasmobranchs were only present in lower percentages. Meal overlap was observed in half of the sampled sharks. No clear trend of prey size selectivity was found, despite smaller individuals seeming incapable of pursuing larger and faster prey. The retention of small prey was also observed in the diet of all sizes of shark. Seasonality in food habits was in accordance with the current availability of food items. The observed vacuity index of 12% is comparable to foraging ecology studies using gillnetting and appears not to be influenced by baited longline gear. Morphological relationships of the digestive system might add important information to the foraging ecology studies and to ecosystem modelling.  相似文献   

6.
Two species of benthic damselfishes from the Gulf of California, Mexico, use contrasting behaviors when feeding on benthic algal communities. The small (±70 g) Cortez damselfish, Eupomacentrus rectifraenum (Gill, 1862), feeds selectively from a multi-species algal mat, eats fleshy red and green algae and ignores brown and calcareous algae. The giant blue damselfish, Microspathodon dorsalis (Gill, 1862), is a large (±450 g), lethargic, nonselective feeder which grazes on a near monoculture of a fleshy red alga, Polysiphonia sp. Feeding activity for both species is low in the morning peaks during late afternoon, and drops sharply as night approaches. Based on feeding rates, gut-filling times, and weights of gut contents, Cortez damselfish process six to eight full guts of food and giant blue damselfish three full guts of food per day. The algal mat exhibits high standing crops (291–618 g dry wt · m?2) and low productivity, but the preferred food of the Cortez damselfish (Ulva) appears to colonize the mat frequently and grow rapidly. The Polysiphonia dominated community on giant blue damselfish territories exhibits low standing crops (23 g · m?2) and high productivity (34–47 times that of the mat per gram algae). Even though the feeding behaviors and resources used by the two damselfishes differ, both species eat similar food (delicate red and green fleshy algae, and depend on rapid colonization and/or high productivity to maintain their primary foods in the grazed algal community.  相似文献   

7.
Invasions of Ponto-Caspian gobiid fishes are suspected to cause regime shifts in freshwater ecosystems. This study compared the trophic niche differentiations of Neogobius melanostomus and Ponticola kessleri in the upper Danube River using stable isotope analyses (δ13C and δ15N), gut content analyses and morphometric analyses of the digestive tract. Both species were identified as predacious omnivores with high dietary overlap and a generalistic feeding strategy. Amphipods (especially invasive Dikerogammarus spp.) contributed 2/3 to the index of food importance. δ15N-signatures of N. melanostomus revealed an ontogenetic diet shift and significantly exceeded those in P. kessleri by ~1.5‰, indicating a niche separation of half a trophic level. P. kessleri had shorter uncoiled intestinal tracts than N. melanostomus, indicating a narrower niche and adaptation to animal food. Trophic niches in both species expanded during the growth period with increasing intraguild predation and cannibalism in P. kessleri and increasing molluscivory in N. melanostomus. P. kessleri showed a higher degree of specialization and more stable feeding patterns across seasons, whereas N. melanostomus adapted its diet according to the natural prey availability. The feeding patterns of both species observed in the upper Danube River strongly differ from those in their native ranges, underlining their great plasticity. Both goby species consumed mainly other non-native species (~92% of gut contents) and seemed to benefit from previous invasions of prey species like Dikerogammarus villosus. The invasive success of gobies and their prey mirror fundamental ecological changes in large European freshwater ecosystems.  相似文献   

8.
Synopsis The feeding ecology of four populations of Semicossyphus pulcher was examined with respect to such factors as site-specific prey availability, density of the sheephead population, and size of the sheephead. The diets of the sheephead were typically broad, though only a few prey categories dominated. There was considerable between-site differences in the dominant prey. The availability of potential prey (in terms of abundance) also differed between sites both in total abundance and abundance of specific prey types. The diets of the sheephead generally reflected the availability of prey where prey were abundant (i.e. San Nicolas Island) but not where prey were scarce (e.g. Cabo Thurloe). Where prey were scarce and the sheephead population biomass was large (e.g. Cabo Thurloe and Isla Guadalupe), the sheephead apparently switched to alternative, and presumably, lower priority prey (i.e., bryozoan encrusted algae). Some abundant, potential prey were avoided in areas where sheephead were typically small, suggesting an inability of the small fish to handle large prey. The interaction of the kind and abundance of prey, and the size and abundance of the sheephead is discussed in relation to the influence of sheephead predation on their prey populations and community structure.  相似文献   

9.
The body depth of crucian carp, Carassius carassius, increases in the presence of predator fish, thereby decreasing the vulnerability of crucian carp to predation. This phenotypic change is mediated by chemical signals, and is believed to result from a piscivorous diet of predators. We have shown that exposure to a piscivorous predator is insufficient to induce growth changes in crucian carp, since water from northern pike, Esox lucius, fed Arctic charr, Salvelinus alpinus, does not induce a change in crucian carp morphology, while water from pike fed crucian carp does. The determining factor is a chemical signal from the skin of crucian carp, as demonstrated by exposure to skin extracts from conspecifics. We suggest that alarm substances from conspecifics, expressing primer pheromone effects, are the most likely candidates for induction of the phenotypical changes.  相似文献   

10.
As part of a survey of the metazoan parasites of elasmobranchs of the Gulf of California, Mexico, the spiral intestines of 10 pelagic thresher sharks Alopias pelagicus and one bigeye thresher shark A. superciliosus were examined for tapeworms. Eight of the A. pelagicus specimens examined were found to host Litobothrium amplifica and L. daileyi. Both tapeworm species are redescribed based on examination of this new material with light and scanning electron microscopy, and the ranges of most of the measurements for these species are expanded; scanning electron micrographs and detailed illustrations and measurements of their segment anatomy are presented for the first time. An argument is made that the identification of the original host specimens of these species was in error and that A. pelagicus is likely to be the correct original host. In addition, L. nickoli n. sp., a third species in the genus hosted by A. pelagicus, was found in three of the 10 individual hosts examined. This species differs from all six known Litobothrium species in the form of the pseudosegments of the scolex, the anterior two being essentially non-cruciform, while the latter three are distinctly cruciform. All other species possess either no non-cruciform or at most one non-cruciform segment anteriorly. The single specimen of A. superciliosus examined was found to host the new species, L. janovyi. This species differs from L. coniformis, L. gracile and L. amsichensis in its possession of four rather than three, three and five cruciform pseudosegments, respectively. It lacks the modificiations of the fourth pseudosegment seen in L. amplifica and lacks the anterior non-cruciform fifth pseudosegment found in L. daileyi. It most closely resembles L. alopias but differs among other features in its greater total length, greater number of segments and longer mature segments. SEM of the four species collected from the Gulf of California as well as material of L. amsichensis from the goblin shark Mitsukurina owstoni that hosted the type-specimens of this species show that all surfaces of the body of all five species bear a dense covering of long filiform microtriches. L. amplifica bears a single row of large spine-like structures throughout most of the posterior margins of the first and second cruciform pseudosegment only. L. daileyi possesses one to two rows of overlapping spine-like structures on the posterior margins of the first four pseudosegments with the exception of the medial projections. The fifth pseudosegment lacks these structures. L. janovyi n. sp. bears spine-like structures on the lateral margins of only the third and fourth pseudosegments. L. nickoli n. sp. bears spine-like structures throughout the posterior margins of the first and second pseudosegments, and throughout the posterior margins of the third and fourth pseudosegments with the exception of the medial projections; the fifth pseudosegment lacks these structures. L. amsichensis bears no structures that could be considered to be spine-like on any of its pseuosegments, but possesses a border of densely arranged larger microtriches on the posterior margin of all five pseudosegments. A key to the species is included.  相似文献   

11.
A total of 262 shortfin mako sharks, Isurus oxyrinchus, was sampled from the swordfish longliners operating in the eastern North Atlantic. Most were juveniles, with only 3.4% mature. Based on cohort analysis, average growth was determined as 61.1 cm year−1 for the first year and 40.6 cm year−1 for the second year. There was a marked seasonality in growth, with average monthly rates of 5.0 cm month−1 in summer and 2.1 cm month−1 in winter. Cohort analysis also indicated summer as the probable parturition season, with sharks close to birth size caught in May 2003 and July 2004. Length at maturity for males was estimated at 180‐cm fork length using the Schnute model. No females between 210 and 290‐cm fork length were caught, although this appears to be the interval where maturation occurs. Gear selectivity was considered as the probable cause for the low number of mature females sampled.  相似文献   

12.
Summary Six mantid species (Sphodromantis viridis, Polyspilota aeruginosa, Hierodula unimaculata, Parasphendale agrionia, Mantis religiosa and Empusa pennata) were studied in laboratory feeding experiments. Mantids stalk their prey and pounce on it, grasping it with their forelegs. Only living prey is selected and it is consumed directly after the catch. The predator orients itself optically, and therefore only takes notice of moving prey. The maximum size of prey which mantids can overwhelm is species-specific and depends on the prey type. On average mantids eat crickets of 50% their own body-weight while cockroaches can weigh up to 110%. Feeding experiments with 101 species of potential prey of 21 invertebrate orders showed an average feeding rate of 70% and marked differences among the predators. Polyspilota proved to be the least specialized mantid and Empusa caught the smallest amount of prey. Most of the defence mechanisms which arthropods have developed against their enemies proved to be ineffective against mantids. Neither a hard chitinous exoskeleton nor poisonous substances prevented the mantids from attacking their prey successfully. The protective secretion of the cotton stainer Dysdercus intermedius proved to be effective at least in a few instances. Even though these bugs were killed, the mantids usually refused to eat the abdomen, where the glands that produce the protective secretion are to be found. Thanatosis, as exhibited by the chrysomelid Cassida viridis and by the phasmid Carausius morosus, proved to be the best protection against mantids.  相似文献   

13.
14.
The herbivorous and carnivorous feeding biology of Tropocyclopsprasinus mexicanus, an especially small cyclopoid copepod, wasstudied under in situ food conditions in three different lakesand under experimentally augmented food supplies. The mass-specificfood uptake is compared to that of two larger species—Cyclopskolensis and Cyclops vicinus. Under in situ food conditions,T.p.mexicanus depended to a larger extent on algae than invertebrateprey and showed lower mass-specific ingestion rates than thetwo larger species. Daily mass-specific uptake rates for algaeranged between 10 and 24% of its body mass versus 0.7–7%for invertebrate prey. The larger species C.vicinus and C.kolensisingested a total dry mass equivalent to 106% or up to 143% oftheir body mass with algae contributing 66 and 81%. However,under enriched food availability, T.p.mexicanus is able to ingesta biomass equivalent to its body mass, with an algae (54%) andprey (40%) portion similar to that of the larger species. Bodysize appears to be an important factor for the relative importanceof algal versus invertebrate prey for cyclopoid copepods.  相似文献   

15.
Environmental Biology of Fishes - Bomb radiocarbon dating was used to determine the periodicity of band pair formation in the vertebral centra of three common thresher sharks (Alopias vulpinus)....  相似文献   

16.
The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1-2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ~2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic.  相似文献   

17.
18.
19.
Synopsis We documented species' distributions, size structure of populations, abundance in mainstem and tributary streams, habitat use, and diets of prickly sculpin, Cottus asper, and coastrange sculpin, C. aleuticus, in the Eel River drainage of California, to determine the processes allowing coexistence of these very similar fishes. We observed prickly sculpins at 43 sites and coastrange sculpins at 34. The species co-occurred at 26 sites. Young-of-year coastrange sculpins were only observed within 42 km of the ocean, but young-of-year prickly sculpins were present throughout the species range. Mean, maximum, and minimum lengths of coastrange sculpins were positively correlated with distance from the ocean but no significant relationships were found for prickly sculpins. Absolute abundance of both species was highest in mainstem habitat (prickly sculpins = 0.6 sculpins m–2 and coastrange sculpins = 0.4 sculpins m–2) . Tributary densities of both species tended to be less than 0.1 sculpins m–2. The species inhabited very similar habitats and had very similar diets. Coastrange sculpin populations in upstream areas were maintained by immigration from downstream areas in contrast with prickly sculpin populations that produced young-of-year fish throughout their range. Densities were probably not high enough for interspecific interactions to be important. The factors limiting the upstream distribution of the species may include high water temperatures, stability of the stream bed, and behavior of the fish. In the past, the range of sculpins within the Eel River drainage probably fluctuated with changing physical conditions. Recent introductions of exotic species that compete with and prey upon sculpins, and ongoing human activities in the drainage could result in major reductions in the distribution and abundance of one or both species.  相似文献   

20.
The feeding mechanism of sharks of the family Carcharhinidae   总被引:4,自引:0,他引:4  
Sanford A.  Moss 《Journal of Zoology》1972,167(4):423-436
The morphology of thefeedingapparatus in several genera of carcharhinid sharks ( Carcharhinus, Rhizoprionodon, Hypoprion, Prionace, Galeocerdo and Negaprion ) was studied in both fresh and preserved states. The actions of the cranial musculature were determined through electrical stimulation. The feeding behaviours of representatives of the genera Carcharhinus, Negaprion and Galeocerdo were studied under controlled conditions by direct observation as well as photographically. The cranial anatomy of carcharhinid sharks is characterized by a relatively reduced chondrocranium and a greatly hypertrophied musculature. The hyostylic jaw suspension serves to allow substantial cranial kinesis, particularly with respect to the upper jaw. Protraction of this skeletal element is accomplished in at least two ways, depending on the external and internal forces applied to the palatoquadrate cartilage. Under one set of conditions upper jaw protraction serves to allow precision when feeding on benthic organisms. Under quite different conditions upper jaw protraction allows the jaw to cut deeply through food items too large to be swallowed whole. The feeding mechanism found in these sharks, therefore, seems to be well adapted to deal with a wide variety of food types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号