首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Protein kinase involved in flagellar-length control   总被引:2,自引:0,他引:2       下载免费PDF全文
During its life cycle, the parasitic protozoon Leishmania mexicana differentiates from a flagellated form, the promastigote, to an amastigote form carrying a rudimentary flagellum. Besides biochemical changes, this process involves a change in overall cell morphology including flagellar shortening. A mitogen-activated protein kinase kinase homologue designated LmxMKK was identified in a homology screening and found to be critically involved in the regulation of flagellar assembly and cell size. LmxMKK is exclusively expressed in the promastigote stage and is likely to be regulated by posttranslational mechanisms such as phosphorylation. A deletion mutant for the single-copy gene revealed motile flagella dramatically reduced in length and lacking the paraflagellar rod, a structure adjacent to the axoneme in kinetoplastid flagella. Moreover, a fraction of the cells showed perturbance of the axonemal structure. Complementation of the deletion mutant with the wild-type gene restored typical promastigote morphology. We propose that LmxMKK influences anterograde intraflagellar transport to maintain flagellar length in Leishmania promastigotes; as such, it is the first protein kinase known to be involved in organellar assembly.  相似文献   

2.
Components of mitogen-activated signal transduction pathways have been shown to be involved in flagellum biogenesis and maintenance. A mitogen-activated protein kinase homologue, designated LmxMPK9 from Leishmania mexicana, has been recently identified in a homology screen and its mRNA found to be present in all life stages. Three different splice-addition sites were used for mRNA maturation in trans-splicing in the different life stages. However, here we show that LmxMPK9 protein is exclusively found in the promastigote stage. Recombinant expression of LmxMPK9 in Escherichia coli and kinase assays revealed a temperature optimum at 27 degrees C, the optimal growth temperature for L. mexicana promastigotes, and a preference for manganese to promote substrate phosphorylation of myelin basic protein. A deletion mutant for the single-copy gene revealed significantly elongated flagella, whereas overexpression led to a subpopulation with rather short to no flagella suggesting a role for LmxMPK9 in flagellar morphogenesis.  相似文献   

3.
Members of the mitogen-activated protein (MAP) kinase cascade are important for the establishment of a Leishmania mexicana infection and are involved in flagellar length control, although the underlying molecular mechanisms remain to be elucidated. This study reports the cloning and characterization of LmxPK4, a MAP kinase kinase homologue of L. mexicana displaying putative plant-like regulatory phosphorylation sites. The recombinant protein has autophosphorylating activity and phosphorylates myelin basic protein. An LmxPK4 gene deletion mutant showed a proliferation defect after infection of macrophages and no or delayed lesion development in mice. Irrespective of the onset of lesion development parasites showed an early and homogeneous lesion development in re-infection experiments. This is indicative for a compensation of the null mutant phenotype. Additionally, this phenotype could be reverted by reintroduction of the wild-type gene into the deletion background. Mutants expressing loss-of-function or N-terminally truncated versions of LmxPK4 retained the null mutant phenotype. LmxPK4 is stage-specifically expressed in promastigotes and during differentiation to amastigotes, but is not detectable in amastigotes isolated from the mammalian host. Moreover, its in vitro kinase activity increases with temperature rise up to 40 degrees C. Our results suggest that LmxPK4 is involved in the differentiation process and affects virulence of Leishmania mexicana.  相似文献   

4.
The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9 kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co-expressed and activated LmxMPK4 in a dose-dependent manner. To our knowledge this is the first time that an in vitro activator of an essential Leishmania MAP kinase was identified and our findings form the basis for the development of drug screening assays to identify small molecule inhibitors of LmxMPK4 in the search for new therapeutic drugs against leishmaniasis.  相似文献   

5.
Amastigotes of Leishmania mexicana pifanoi were cultivated by serial transfers in cell-free medium UM-54 at 33 and 35 C. Electron microscopy was used to analyze the structural relationships among promastigotes, axenically cultured amastigotes, and amastigotes in footpads of infected hamsters. These studies revealed very close structural similarities between culture and hamster derived amastigotes. However, both of these amastigotes differed from the promastigotes in the following aspects. The flagellum of promastigotes contained a paraxial rod originating at the axosome level within the flagellar pocket, whereas the flagellum of amastigotes lacks this structure. The flagellar pocket of promastigotes was usually small whereas amastigotes had a distended reservoir. Subpellicular microtubules of promastigotes terminated at the posterior end, whereas those of amastigotes ended subterminally. Membrane bounded vesicles were present only in amastigotes. These results along with the biologic and antigenic comparisons indicate that amastigotes obtained from axenic cultures are related very closely to amastigotes from infected hamster footpads and that their relationship to promastigotes is far more distant.  相似文献   

6.
The density and distribution of intramembranous particles was analyzed in freeze fracture replicas of the plasma membrane of amastigotes, and infective as well as noninfective promastigotes of Leishmania mexicana amazonensis. The density of intramembranous particles on both protoplasmic and extracellular faces was higher in infective than in noninfective promastigotes and it was lower in amastigotes than in promastigotes. Amastigotes purified immediately after tissue homogenization were surrounded by a membrane which corresponded to the membrane which lined the endocytic vacuoles where the parasites were located within the tissue macrophages. Aggregation of the particles was seen in the flagellar membrane at the point of emergence of the flagellum from the flagellar pocket. Differences in the organization of the particles were seen in the membrane which lined the flagellar pocket of amastigotes and promastigotes. The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the plasma membrane of L. m. amazonensis. The effect of filipin in the parasite's structure was analyzed by scanning electron microscopy and by transmission electron microscopy of thin sections and freeze fracture replicas. Filipin sterol complexes were distributed throughout the membrane which lined the cell body, the flagellar pocket, and the flagellum. No filipin sterol complexes were seen in the cell body-flagellar adhesion zone. The density of filipin sterol complexes was lower in the membrane lining the flagellum than in that lining the cell body of promastigotes.  相似文献   

7.
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.  相似文献   

8.
Monoclonal antibodies specific for the soluble, secreted acid phosphatase (EC 3.1.3.2) of Leishmania donovani were used to investigate the localization of this enzyme in extracellular promastigotes and intracellular amastigotes. Indirect immunofluorescence showed a weak general staining in the promastigote cytoplasm, together with strong fluorescence in the flagellar reservoir. Immunofluorescence studies on U937 cells infected in vitro with L. donovani showed that the pathogenic amastigote stage also produced soluble acid phosphatase. Metabolic labeling experiments using promastigotes indicated that the intracellular enzyme was soluble prior to secretion and no evidence was found for the association of secretory acid phosphatase with cell membranes after protein synthesis. The rapid release of acid phosphatase from the flagellar reservoir was energy dependent and may be coupled to beating of the flagellum. The results demonstrated that acid phosphatase was secreted into the flagellar reservoir by Leishmania promastigotes using a conventional constitutive secretory mechanism, and subsequently released from the reservoir into the extracellular medium.  相似文献   

9.
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of trivalent metalloids, arsenite and antimonite. We have earlier shown that downregulation of LmAQP1 provides resistance to trivalent antimony compounds whereas increased expression of LmAQP1 in drug-resistant parasites can reverse the resistance. In this paper we describe the biochemical characterization of LmAQP1. Expression of LmAQP1 in Xenopus oocytes rendered them permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. The transport property of LmAQP1 was severely affected when a critical Arg230, located inside the pore of the channel, was altered to either alanine or lysine. Immunofluorescence and immuno-electron microscopy revealed LmAQP1 to be localized to the flagellum of Leishmania promastigotes and in the flagellar pocket membrane and contractile vacuole/spongiome complex of amastigotes. This is the first report of an aquaglyceroporin being localized to the flagellum of any microbe. Leishmania promastigotes and amastigotes expressing LmAQP1 could regulate their volume in response to hypoosmotic stress. Additionally, Leishmania promastigotes overexpressing LmAQP1 were found to migrate faster towards an osmotic gradient. These results taken together suggest that Leishmania LmAQP1 has multiple physiological roles, being involved in solute transport, volume regulation and osmotaxis.  相似文献   

10.
M Wiese 《The EMBO journal》1998,17(9):2619-2628
The parasitic protozoon Leishmania mexicana undergoes two major developmental stages in its life cycle exhibiting profound physiological and morphological differences, the promastigotes in the insect vector and the amastigotes in mammalian macrophages. A deletion mutant, Deltalmsap1/2, for the secreted acid phosphatase (SAP) gene locus, comprising the two SAP genes separated by an intergenic region of approximately 11.5 kb, lost its ability to cause a progressive disease in Balb/c mice. While in vitro growth of promastigotes, invasion of host cells and differentiation from promastigotes to amastigotes was indistinguishable from the wild-type, the mutant parasites ceased to proliferate when transformed to amastigotes in infected macrophages or in a macrophage-free in vitro differentiation system, suggesting a stage-specific growth arrest. This phenotype could be reverted by complementation with 6 kb of the intergenic region of the SAP gene locus. Sequence analysis identified two open reading frames, both encoding single copy genes; one gene product shows high homology to mitogen-activated protein (MAP) kinases. Complementation experiments revealed that the MAP kinase homologue, designated LMPK, is required and is sufficient to restore the infectivity of the Deltalmsap1/2 mutant. Therefore, LMPK is a kinase that is essential for the survival of L.mexicana in the infected host by affecting the cell division of the amastigotes.  相似文献   

11.
The cellular ultrastructure and surface glycoconjugate expression of three life stages of Leishmania major were compared. Noninfective logarithmic phase promastigotes (LP) are immature cells bearing a thin cell coat, short flagellum, small and empty flagellar pocket, and a loose cytoplasm filled with profiles of ER and large Golgi complex. LP also contain subpopulations of maturing cells containing less ER and Golgi and synthesizing cytoplasmic granules of different size, number, and electron-density. Infective or metacyclic promastigotes (MP) are fully differentiated nondividing forms with a thickened, prominent cell coat, long flagellum, distended flagellar pocket filled with secretory material, and few cytoplasmic organelles other than abundant electron-dense granules. Tissue amastigotes also contain electron-dense cytoplasmic granules, their flagellar pockets are also enlarged and contain secretory material, but they lack a discernable cell coat. Immunogold labeling of GP63 on the cell surface was extensive only on amastigotes. Promastigote GP63 appeared to be masked by the presence of a densely packed lipophosphoglycan (LPG) coat which was extensively labeled on the entire surface of MP and LP. An elongated, developmentally modified form of LPG was abundantly labeled only on MP. LPG was poorly labeled on amastigotes, arguing that the promastigote cell coat is a stage-specific structure which is lost during intracellular transformation.  相似文献   

12.
Leishmania are protozoan parasites that infect various mammalian species, including humans. It is generally thought that random attachment of the flagellated promastigotes to mononuclear phagocytes initiates their uptake via circumferential pseudopods. Intracellularly, the promastigotes become located in phagolysosomes in which they transform to and survive as 'aflagellated' amastigotes that hide their shortened flagellum within the flagellar pocket. Unrestricted replication of these amastigotes is assumed to cause the eventual burst of the host cell, thereby releasing the infectious parasites. Here, Mike Rittig and Christian Bogdan review a large body of literature containing potentially important but poorly appreciated findings, which together with recent results, argue for Leishmania-host-cell interactions that are much more complex than generally thought.  相似文献   

13.
14.
Leishmania donovani ADP-ribosylation factor-like protein 3A (LdARL-3A) is a small G protein isolated from the protozoan parasite L. donovani with no defined physiological function. Previously [Cuvillier, A., Redon, F., Antoine, J.-C., Chardin, P., DeVos, T., and Merlin, G. (2000) J Cell Sci 113: 2065-2074] we have shown that overexpression in L. amazonensis promastigotes of the mutated protein LdARL-3A-Q70L, which remains constitutively associated with GTP, leads to the disappearance of the flagellum but does not impair cell viability or growth. Here we report that parasites overexpressing LdARL-3A-Q70L can invade in vitro cultivated macrophages to the same extent as control cells, demonstrating that the flagellum is not necessary for attachment to or engulfment into macrophages. These infections are productive because amastigotes differentiate and multiply. However, aflagellated LdARL-3A-Q70L-overexpressing Leishmania promastigotes could not survive in experimentally infected Lutzomyia longipalpis insect vectors, in contrast to untransfected or native LdARL-3A-overexpressing cells. Overexpression of the native and mutated proteins did not modify in vitro procyclic to metacyclic lipophosphoglycan maturation or differentiation from procyclic to metacyclic promastigotes, nevertheless there is a block in transmission of Leishmania. Better understanding of LdARL-3A pathways, notably those regarding flagellum biogenesis, may lead to the future development of Leishmania-specific drugs, which may stop parasite transmission in nature without affecting other species.  相似文献   

15.
Leishmania is a protozoan pathogen which is transmitted to humans through the bite of an infected sandfly. This infection results in a spectrum of diseases throughout the developing world, collectively known as leishmaniasis. During its life cycle, Leishmania differentiates from the promastigote stage in the sandfly vector into the amastigote stage in the mammalian host where it multiplies exclusively in macrophage phagolysosomes. Although differentiation of Leishmania is essential for its survival and pathogenesis in the mammalian host, this process is poorly understood. In higher eukaryotic cells, protein tyrosine phosphorylation plays a central role in cell proliferation, differentiation and overall function. We have therefore investigated the role of protein tyrosine phosphorylation in Leishmania differentiation by undertaking complementary approaches to mediate protein tyrosine dephosphorylation in vivo. In the present study, L. donovani were engineered to express a mammalian protein tyrosine phosphatase, or were treated with inhibitors of protein tyrosine kinases, and the resulting phenotype was examined. Both approaches resulted in a partial differentiation from promastigotes to amastigotes including the expression of the amastigote specific A2 protein, morphological change and increased virulence. These data provide support for the involvement of tyrosine phosphorylation in the differentiation of Leishmania.  相似文献   

16.
L. donovani promastigotes were subjected to heat treatment yielding an axenic amastigote stage which was long-term cultured at 37 degrees C. No differences were observed between the growth rates of axenic amastigotes and promastigotes. Flow cytometry-derived DNA histograms of axenic amastigotes and promastigotes were typical of exponentially growing cell populations. Moreover, axenic amastigotes were metabolically active as evidenced by the release of an immunoprecipitable extracellular acid phosphatase (SAcP) into their culture supernatant. Cell transformation was confirmed by transmission electronmicroscopic examination of thin sections and extended by fracture-flip survey which allowed differentiation of cell membranes. The ultrastructure and nanoanatomy of axenic amastigotes was identical to that of intracellular amastigotes. The production of large amounts of heat-shock axenic amastigotes suitable for biochemical and biological studies of differentiation in Leishmania donovani may have important implications in the development of prevention and/or treatment strategies.  相似文献   

17.
Leishmania donovani are the causative agents of kala azar in humans. These organisms cycle between the proline-rich environment of the sand fly vector (extracellular promastigotes) and the sugar-rich condition in the mammalian host (intracellular amastigotes). Parasites have adapted to these extreme changes in proline concentrations: promastigotes utilize proline as a carbon source, whereas amastigotes utilize sugars and fatty acids. Previous studies have suggested that promastigotes and amastigotes express distinct proline transporters. However, the information available on these transporters is limited. In this work, proline transport was investigated in axenic L. donovani cultures. Three transport systems were identified: cation-dependent and -independent proline transporters in promastigotes (systems A and B, respectively) and a single cation-independent transporter in amastigotes (system C). Systems A and C have broad specificity to almost all amino acids and obtain optimum activity at acidic pH ranges (pH 6 and 5, respectively). System B is more specific to proline, as it is inhibited by only five amino acids. Temperature response analyses indicated that the transporters of both promastigotes and amastigotes perform best at 37 degrees C. The activity of system A during parasite differentiation was assessed. The transport activity of system A disappeared 3 days after promastigotes were induced to differentiate into amastigotes. In these cells, elevated temperature and acidic pH each suppressed the activity of system A. When amastigotes were induced to differentiate back into promastigotes, system A resumed its activity 24 h after differentiation was initiated. In conclusion, L. donovani obtain proline transport systems that are stage specific, regulated by both pH and temperature. This paper constitutes the first investigation of amino acid transport in axenic L. donovani.  相似文献   

18.
During the infectious cycle, protozoan parasites undergo various developmental transitions and switch virulence factors in response to extracellular signals in insect vectors and human hosts. Despite the importance of environmental sensing in parasite pathogenicity, little is known about the pathways that transduce extracellular signals into stage-specific gene expression. Here, we used a transgenic approach to gain insight into localisation and activity of three green fluorescence protein (GFP)-tagged Leishmania major mitogen-activated protein kinases, LmaMPK4, 7 and 10. The GFP-LmaMPKs in both L. major and Leishmania donovani transgenic lines showed predominant cytoplasmic localisation and the over-expression had no effect on promastigote morphology, growth and the ability to differentiate into stationary-phase metacyclics for L. major and axenic amastigotes for L. donovani. We isolated the GFP-tagged MPKs from parasite extracts and tested their phosphotransferase activity across various culture conditions. For all three GFP-LmaMPKs, kinase activity was low or absent in promastigote extracts but significantly increased in L. major promastigotes after exposure to pH 5.5 and 34 degrees C, and in axenic L. donovani amastigotes. Enhanced activity correlated with increased GFP-LmaMPK phosphorylation as judged by phospho-specific fluorescent staining of the immuno-precipitated kinases. We could extend these findings to the endogenous LmaMPK10, which accumulated in the phospho-protein fraction of axenic amastigotes but not promastigotes, and thus follows the stage-specific phosphorylation profile of episomally expressed GFP-LmaMPK10. These results provide evidence for the functional conservation of Leishmania MAP kinases in parasite environmental sensing and underscore the potential of transgenic approaches to gain insight into signaling events during the Leishmania life cycle.  相似文献   

19.
A rapid fluorescent viability assay employing alamarBlue was optimized for use with Leishmania axenic amastigotes, the stage of the parasite responsible for disease pathology. The activity of two protein kinase inhibitors, Staurosporine and H-89, as well as Amphotericin B, on promastigotes and amastigotes of Leishmania donovani and Leishmania tropica was compared. Both protein kinase inhibitors inhibited promastigote growth at lower concentrations than amastigotes, while the GI(50) for Amphotericin B on both stages was similar. This assay only requires a limited number of axenic amastigotes (50,000 cells/well) and can be used to rapidly screen large chemical or natural product libraries for activity against amastigotes.  相似文献   

20.
Protein phosphorylation controls major steps of proliferation and differentiation in eukaryotic cells. However there are few studies done in protozoa particularly when being triggered by external stimuli. In this paper we have examined the tyrosine- and serine/threonine-phosphorylated proteins in both promastigote and amastigote-like forms of Leishmania (Leishmania) mexicana stimulated with insulin-like growth factor (IGF)-I. Stimulation with IGF-I induces major tyrosine phosphorylation of a 185-kDa protein in promastigotes and 60- and 40-kDa proteins in amastigotes. Analysis of total phosphorylation revealed additional sets of phosphorylated proteins: a 110-kDa protein band in promastigotes and two other proteins of 120 and 95 kDa in the amastigote-like forms. To further analyze the IGF-I-mediated response we compared it with the phosphorylation pattern obtained with a known inducer of protein kinase C, phorbol myristate acetate. This analysis showed overlapping phosphorylation of most of the proteins but mainly of the 185- and 110-kDa proteins in the promastigotes and the 95-. 60- and 40-kDa proteins in the amastigote-like forms. We thus conclude that there are phosphorylation-dependem pathways in Leishmania parasites induced by IGF-I that are stage-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号