首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Combinatorial association of DNA-binding proteins on composite binding sites enhances their nucleotide sequence specificity and functional synergy. As a paradigm for these interactions, Pax-5 (BSAP) assembles ternary complexes with Ets proteins on the B cell-specific mb-1 promoter through interactions between their respective DNA-binding domains. Pax-5 recruits Ets-1 to bind the promoter, but not the closely related Ets protein SAP1a. Here we show that, while several different mutations increase binding of SAP1a to an optimized Ets binding site, only conversion of Val68 to an acidic amino acid facilitates ternary complex assembly with Pax-5 on the mb-1 promoter. This suggests that enhanced DNA binding by SAP1a is not sufficient for recruitment by Pax-5, but instead involves protein–protein interactions mediated by the acidic side chain. Recruitment of Ets proteins by Pax-5 requires Gln22 within the N-terminal β-hairpin motif of its paired domain. The β-hairpin also participates in recognition of a subset of Pax-5-binding sites. Thus, Pax-5 incorporates protein–protein interaction and DNA recognition functions in a single motif. The Caenorhabditis elegans Pax protein EGL-38 also binds specifically to the mb-1 promoter and recruits murine Ets-1 or the C.elegans Ets protein T08H4.3, but not the related LIN-1 protein. Together, our results define specific amino acid requirements for Pax–Ets ternary complex assembly and show that the mechanism is conserved between evolutionarily related proteins of diverse animal species. Moreover, the data suggest that interactions between Pax and Ets proteins are an important mechanism that regulates fundamental biological processes in worms and humans.  相似文献   

11.
12.
13.
14.
15.
16.
The abundance of crystallins (> 80% of the soluble protein) in the ocular lens provides advantageous markers for selective gene expression during cellular differentiation. Here we show by functional and protein-DNA binding experiments that the chicken alpha A-crystallin gene is regulated by at least five control elements located at sites A (-148 to -139), B (-138 to -132), C (-128 to -101), D (-102 to -93), and E (-56 to -41). Factors interacting with these sites were characterized immunologically and by gel mobility shift experiments. The results are interpreted with the following model. Site A binds USF and is part of a composite element with site B. Site B binds CREB and/or CREM to enhance expression in the lens and binds an AP-1 complex including CREB, Fra2 and/or JunD which interacts with USF on site A to repress expression in fibroblasts. Sites C and E (which is conserved across species) bind Pax-6 in the lens to stimulate alpha A-crystallin promoter activity. These experiments provide the first direct data that Pax-6 contributes to the lens-specific expression of a crystallin gene. Site D (-104 to -93) binds USF and is a negative element. Thus, the data indicate that USF, CREB and/or CREM (or AP-1 factors), and Pax-6 bind a complex array of positive and negative cis-acting elements of the chicken alpha A-crystallin gene to control high expression in the lens and repression in fibroblasts.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号