首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

2.
K. Clay 《Oecologia》1987,73(3):358-362
Summary Many grasses are infected by endophytic fungi that grow intercellularly in leaves, stems, and flowers and are transmitted maternally by hyphal growth into ovules and seeds. The seed biology and seedling growth of endophyte-infected and uninfected perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) were investigated under controlled environmental conditions. The percentage of filled seeds produced by infected tall fescue was over twice of uninfected tall fescue; infected and uninfected perennial reegrass had similar percentages. Weights of seeds from infected and uninfected plants were similar in both species. Seeds from infected plants of both species exhibited a higher rate of germination than seeds from uninfected plants. Shoot growth in the greenhouse was compared by making three sequential harvests of above-ground plant parts from infected and uninfected plants of both species. Infected perennial ryegrass plants produced significantly more biomass and tillers than uninfected plants after 6 and 10 weeks of growth and significantly more biomass after 14 weeks of growth. Infected tall fescue plants produced significantly more biomass and tillers than uninfected plants after 10 and 14 weeks of growth. The physiological mechanism of enhancement of growth is not known. The results of this study suggest that infected plants may have a selective advantage in populations with uninfected members.  相似文献   

3.
In order to better elucidate fixed-C partitioning, nutrient acquisition and water relations of prairie grasses under elevated [CO2], we grew the C4 grass Bouteloua gracilis (H.B.K.) lag ex Steud. from seed in soil-packed, column-lysimeters in two growth chambers maintained at current ambient [CO2] (350 μL L−1) and twice enriched [CO2] (700 μL L−1). Once established, plants were deficit irrigated; growth chamber conditions were maintained at day/night temperatures of 25/16°C, relative humidities of 35%/90% and a 14-hour photoperiod to simulate summer conditions on the shortgrass steppe in eastern Colorado. After 11 weeks of growth, plants grown under CO2 enrichment had produced 35% and 65% greater total and root biomass, respectively, and had twice the level of vesicular-arbuscular mycorrhizal (VAM) infection (19.8% versus 10.8%) as plants grown under current ambient [CO2]. The CO2-enriched plants also exhibited greater leaf water potentials and higher plant water use efficiencies. Plant N uptake was reduced by CO2 enrichment, while P uptake appeared little influenced by CO2 regime. Under the conditions of the experiment, CO2 enrichment increased root biomass and VAM infection via stimulated growth and adjustments in C partitioning below-ground. The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

4.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis.  相似文献   

5.
Atmospheric CO2 enrichment usually changes the relative contributions of plant species to biomass production of grasslands, but the types of species favored and mechanisms by which change is mediated differ among ecosystems. We measured changes in the contributions of C3 perennial forbs and C4 grasses to aboveground biomass production of tallgrass prairie assemblages grown along a field CO2 gradient (250–500 μmol mol?1) in central Texas USA. Vegetation was grown on three soil types and irrigated each season with water equivalent to the growing season mean of precipitation for the area. We predicted that CO2 enrichment would increase the forb contribution to community production, and favor tall‐grasses over mid‐grasses by increasing soil water content and reducing the frequency with which soil water fell below a limitation threshold. CO2 enrichment favored forbs over grasses on only one of three soil types, a Mollisol. The grass fraction of production increased dramatically across the CO2 gradient on all soils. Contribution of the tall‐grass Sorghastrum nutans to production increased at elevated CO2 on the two most coarse‐textured of the soils studied, a clay Mollisol and sandy Alfisol. The CO2‐caused increase in Sorghastrum was accompanied by an offsetting decline in production of the mid‐grass Bouteloua curtipendula. Increased CO2 favored the tall‐grass over mid‐grass by increasing soil water content and apparently intensifying competition for light or other resources (Mollisol) or reducing the frequency with which soil water dipped below threshold levels (Alfisol). An increase in CO2 of 250 μmol mol?1 above the pre‐industrial level thus led to a shift in the relative production of established species that is similar in magnitude to differences observed between mid‐grass and tallgrass prairies along a precipitation gradient in the central USA. By reducing water limitation to plants, atmospheric CO2 enrichment may alter the composition and even structure of grassland vegetation.  相似文献   

6.
Atmospheric carbon dioxide (CO2) enrichment may increase plant growth more than the uptake of chemical elements from soil. Increased CO2 also may alter element levels in biomass from multi-species vegetation by changing plant species abundances. We measured concentrations of ten elements in aboveground tissues of three C4 grasses that had been exposed for 2–3 growing seasons to a continuous gradient in CO2 from 250 to 500 μmol mol−1. The grasses, Bouteloua curtipendula, Schizachyrium scoparium, and Sorghastrum nutans, are competitive dominants in assemblages of tallgrass prairie vegetation growing on each of three soil types along a field CO2 gradient in central Texas, USA. Our objective was to determine whether CO2 influences element concentrations in grass mixtures by changing concentrations in individual species or shifting species abundances. Increased CO2 had little effect on element concentrations in grasses compared to differences observed among grass species and soils. Increasing CO2 from the pre-Industrial to elevated levels reduced the phosphorus concentration in grasses grown on a clay and sandy loam soil. Concentrations of most other elements did not respond to CO2 treatment. Cover of the mid-grass Bouteloua declined at higher CO2 levels as cover of the taller grass Sorghastrum increased. Concentrations of several elements were lower in Bouteloua than Sorghastrum; hence, this exchange of species at higher CO2 increased element concentrations in grass assemblages. Potential consequences include an improvement in the nutritional quality of plants for herbivores. Results highlight the underappreciated impact that CO2 enrichment may have on ecosystem functioning by changing plant composition.  相似文献   

7.
Disease is an integral element of agricultural and natural systems, but the roles pathogens play in determining ecosystem response to elevated CO2 have rarely been examined. To investigate whether disease can alter the response of plants to CO2, we examined the effects of doubled CO2 (~700 μmol mol?1) on Avena sativa infected with barley yellow dwarf virus (BYDV), a common pathogen of cereals and grasses. Oats infected with BYDV showed a significantly greater biomass response to CO2 enrichment than did healthy plants. Root mass of diseased plants increased by 37–60% with CO2 enrichment, but was largely unaffected in healthy plants. CO2 enrichment increased midday leaf-level photosynthesis and instantaneous water use efficiency by 34 and 93% in healthy plants and by 48 and 174% in infected plants. Foliar carbohydrates increased with both CO2 enrichment and BYDV infection, but the two factors affected individual pools dissimilarly. CO2 enrichment may alter the epidemiology of BYDV by increasing the persistence of infected plants.  相似文献   

8.
Abstract The perennial ryegrass, Lolium perenne, forms a symbiotic relationship with Neotyphodium lolii, a fungus that produces alkaloids. This relationship provides a competitive advantage to the host plant in grassland communities by increasing drought tolerance, and disease and herbivore resistance. Black cutworm, Agrotis ipsilon, is among the few insect species that are able to feed and develop on endophytic perennial ryegrass. Some insects can use plant secondary compounds to defend themselves against predators, therefore we hypothesized that the cutworms fed on endophytic grasses would exhibit greater defense against a lethal endoparasitic nematode, Steinernema carpocapsae. Laboratory experiments involving 4–5th instars support the hypothesis that A. ipsilon feeding on grass clippings from field plots with high (> 90%) incidence of endophyte infected perennial ryegrass are less susceptible to entomopathogenic nematodes than larvae fed grass clippings from plants with little or no incidence of endophyte. Laboratory studies resulted in similar overall mortality after 48 h. Field studies, however, show decreased susceptibility to S. carpocapsae when larvae were confined to areas of endophytic grass (> 75% infected). Early instars (2–3rd) fed on endophyte free grass suffered greater overall mortality at all nematode concentrations than 4–5th instars fed similarly. Early (2–3rd) instars were equally susceptible to nematode attack regardless of food source. Our results indicate that the fungal endosymbionts of grasses can influence the biology of natural enemies of an herbivorous insect.  相似文献   

9.
Summary The effects of CO2 enrichment on the growth, biomass partitioning, photosynthetic rates, and leaf nitrogen concentration of a grass, Bromus mollis (C3), were investigated at a favorable and a low level of nitrogen availability. Despite increases in root: shoot ratios, leaf nitrogen concentrations were decreased under CO2 enrichment at both nitrogen levels. For the low-nitrogen treatment, this resulted in lower photosynthetic rates measured at 650 l/l for the CO2-enriched plants, compared to photosynthetic rates measured at 350 l/l for the non-enriched plants. At higher nitrogen availability, photosynthetic rates of plants grown and measured at 650 l/l were greater than photosynthetic rates of the non-enriched plants measured at 350 l/l. Water use efficiency, however, was increased in enriched plants at both nitrogen levels. CO2 enrichment stimulated vegetative growth at both high and low nitrogen during most of the vegetative growth phase but, at the end of the experiment, total biomass of the high and low CO2 treatments did not differ for plants grown at low nitrogen availability. While not statistically significant, CO2 tended to stimulate seed production at high nitrogen and to decrease it at low nitrogen.  相似文献   

10.
This study investigated the demographic consequences of fungal infection of a perennial grass, Stipa leucotricha. The rate of parasitism of this grass by the host-specific, systemic fungus Atkinsonella texensis varies over short distances. Infection was frequent (57% of plants) in mottes (clusters of woody plants) but rarer in adjacent open grasslands (9%). To test the hypothesis that the relative performance of infected and uninfected plants differed in the two habitats, infected and uninfected genotypes were collected from mottes in a central Texas population, propagated in the green-house and then transplanted into the same site in replicate plots within mottes, at the edges of mottes, and in open grassy areas. Demographic data were recorded for 30 months over three growing seasons. Plants were observed to lose and gain infection. Infection had no significant effect on plant survival, tiller number or dry mass although infected plants tended to be larger. Uninfected plants had a significantly higher probability of setting seed but there were no differences in seed production by reproductive plants. There were significant effects of planting environment on all of these measures. Motte edges were most favorable for S. leucotricha transplants while motte interiors were least favorable and open areas were intermediate. There was no evidence of habitat x infection interactions; therefore the fungal infection had similar effects in different habitats. The high frequency of infection in motte habitats is best explained by more efficient contagious spread there. The favorability of motte edges for plant growth is substantially offset by higher infection rates at the edges of mottes.  相似文献   

11.
Rozema  J.  Lenssen  G. M.  van de Staaij  J. W. M.  Tosserams  M.  Visser  A. J.  Broekman  R. A. 《Plant Ecology》1997,128(1-2):183-191
UV-B radiation is just one of the environmental factors, that affect plant growth. It is now widely accepted that realistic assessment of plant responses to enhanced UV-B should be performed at sufficiently high Photosynthetically Active Radiation (PAR), preferably under field conditions. This will often imply, that responses of plants to enhanced UV-B in the field will be assessed under simultaneous water shortage, nutrient deficiency and variation of temperature. Since atmospheric CO2 enrichment, global warming and increasing UV-B radiation represent components of global climatic change, interactions of UV-B with CO2 enrichment and temperature are particularly relevant. Only few relevant UV-B× CO2 interaction studies have been published. Most of these studies refer to greenhouse experiments. We report a significant CO2 × UV-B interaction for the total plant dry weight and root dry weight of the C3-grass Elymus athericus. At elevated CO2 (720 mol mol-1, plant growth was much less reduced by enhanced UV-B than at ambient atmospheric CO2 although there were significant (positive) CO2 effects and (negative) UV-B effects on plant growth. Most other CO2 × UV-B studies do not report significant interactions on total plant biomass. This lack of CO2 × UV-B interactions may result from the fact that primary metabolic targets for CO2 and UVB are different. UV-B and CO2 may differentially affect plant morphogenetic parameters: biomass allocation, branching, flowering, leaf thickness, emergence and senescence. Such more subtle interactions between CO2 and UV-B need careful and long term experimentation to be detected. In the case of no significant CO2× UV-B interactions, combined CO2 and UV-B effects will be additive. Plants differ in their response to CO2 and UV-B, they respond in general positively to elevated CO2 and negatively to enhanced UV-B. Moreover, plant species differ in their responsiveness to CO2 and UV-B. Therefore, even in case of additive CO2 and UV-B effects, plant competitive relationships may change markedly under current climatic change with simultaneous enhanced atmospheric CO2 and solar UV-B radiation.  相似文献   

12.
The symbiotic relationships between Neotyphodium endophytes (Clavicipitacea) and certain cool‐season (C3) grasses result in the synthesis of several alkaloids that defend the plant against herbivory. Over a 3 month period we evaluated the effects of temperature on the expression of these alkaloids in tall fescue, Festuca arundinacea Schreb, and perennial ryegrass, Lolium perenne L. (Poaceae). Response surface regression analysis indicated that month, temperature, and their interaction had an impact on the alkaloid levels in both grasses. We aimed to identify the alkaloids most closely associated with enhanced resistance to the fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and clarify the role of temperature in governing the expression of these alkaloids. The dry weights and survival of fall armyworms feeding on endophyte‐infected tall fescue or perennial ryegrass were significantly lower than for those feeding on uninfected grass, whereas endophyte infection had no significant influence on survival. For tall fescue, a four‐alkaloid model consisting of a plant alkaloid, perloline, and the fungal alkaloids ergonovine chanoclavine, and ergocryptine, explained 47% of the variation in fall armyworm dry weight, whereas a three‐alkaloid model consisting of the plant alkaloid perloline methyl ether and the fungal alkaloids ergonovine and ergocryptine explained 70% of the variation in fall armyworm dry weight on perennial ryegrass. Although temperature had a significant influence on overall alkaloid expression in both grasses, the influence of temperature on individual alkaloids varied over time. The levels of those alkaloids most closely linked to armyworm performance increased linearly or curvilinearly with increasing temperature during the last 2 months of the study. We conclude that the growth temperature of grasses can influence the performance of fall armyworm, and that this effect may be mediated through a set of plant‐ and endophyte‐related alkaloids.  相似文献   

13.
Lenssen  G. M.  Lamers  J.  Stroetenga  M.  Rozema  J. 《Plant Ecology》1993,(1):379-388
The growth response of Dutch salt marsh species (C3 and C4) to atmospheric CO2 enrichment was investigated. Tillers of the C3 speciesElymus athericus were grown in combinations of 380 and 720 11-1 CO2 and low (O) and high (300 mM NaCl) soil salinity. CO2 enrichment increased dry matter production and leaf area development while both parameters were reduced at high salinity. The relative growth response to CO2 enrichment was higher under saline conditions. Growth increase at elevated CO2 was higher after 34 than 71 days. A lower response to CO2 enrichment after 71 days was associated with a decreased specific leaf area (SLA). In two other experiments the effect of CO2 (380 and 720 11-1) on growth of the C4 speciesSpartina anglica was studied. In the first experiment total plant dry weight was reduced by 20% at elevated CO2. SLA also decreased at high CO2. The effect of elevated CO2 was also studied in combination with soil salinity (50 and 400 mM NaCl) and flooding. Again plant weight was reduced (10%) at elevated CO2, except under the combined treatment high salinity/non-flooded. But these effects were not significant. High salinity reduced total plant weight while flooding had no effect. Causes of the salinity-dependent effect of CO2 enrichment on growth and consequences of elevated CO2 for competition between C3 and C4 species are discussed.  相似文献   

14.
This study investigated the effect of elevated CO2 on the post‐fire resprouting response of a grassland system of perennial grass species of Cumberland Plain Woodland. Plants were grown in mixtures in natural soil in mesocosms, each containing three exotic grasses (Nassella neesiana, Chloris gayana, Eragrostis curvula) and three native grasses (Themeda australis, Microlaena stipoides, Chloris ventricosa) under elevated (700 ppm) and ambient (385 ppm) CO2 conditions. Resprouting response after fire at the community‐ and species‐level was assessed. There was no difference in community‐level biomass between CO2 treatments; however, exotic species made up a larger proportion of the community biomass under all treatments. There were species‐level responses to elevated CO2 but no significant interactions found between CO2 and burning or plant status. Two exotic grasses (N. neesiana and E. curvula, a C3 and a C4 species respectively), and one native grass (M. stipoides, a C3 species) significantly increased in biomass, and a native C4 grass (C. ventricosa) significantly decreased in biomass under elevated CO2. These results suggest that although overall productivity of this community may not change with increases in CO2 and fire frequency, the community composition may alter due to differential species responses.  相似文献   

15.
It has been suggested that enrichment of atmospheric CO2 should alter mycorrhizal function by simultaneously increasing nutrient‐uptake benefits and decreasing net C costs for host plants. However, this hypothesis has not been sufficiently tested. We conducted three experiments to examine the impacts of CO2 enrichment on the function of different combinations of plants and arbuscular mycorrhizal (AM) fungi grown under high and low soil nutrient availability. Across the three experiments, AM function was measured in 14 plant species, including forbs, C3 and C4 grasses, and plant species that are typically nonmycorrhizal. Five different AM fungal communities were used for inoculum, including mixtures of Glomus spp. and mixtures of Gigasporaceae (i.e. Gigaspora and Scutellospora spp.). Our results do not support the hypothesis that CO2 enrichment should consistently increase plant growth benefits from AM fungi, but rather, we found CO2 enrichment frequently reduced AM benefits. Furthermore, we did not find consistent evidence that enrichment of soil nutrients increases plant growth responses to CO2 enrichment and decreases plant growth responses to AM fungi. Our results show that the strength of AM mutualisms vary significantly among fungal and plant taxa, and that CO2 levels further mediate AM function. In general, when CO2 enrichment interacted with AM fungal taxa to affect host plant dry weight, it increased the beneficial effects of Gigasporaceae and reduced the benefits of Glomus spp. Future studies are necessary to assess the importance of temperature, irradiance, and ambient soil fertility in this response. We conclude that the affects of CO2 enrichment on AM function varies with plant and fungal taxa, and when making predictions about mycorrhizal function, it is unwise to generalize findings based on a narrow range of plant hosts, AM fungi, and environmental conditions.  相似文献   

16.
Carbon dioxide has been rapidly accumulating in the atmosphere and is expected to continue to do so. This accumulation is presumed to have important direct effects on plant growth. The interacting affects of a small increase in CO2 concentration (466 p.p.m., approximately 30% increase from current ambient conditions), nitrogen fertilization and fungal endophyte (Neotyphodium lolii) infection on the growth and chemical composition of perennial ryegrass (Lolium perenne) were investigated. It was found that dry mass production was approximately 50% greater under elevated CO2 than under ambient CO2, but only in conditions of high soil N. High molecular weight carbohydrates and total carbohydrates (LMW + HMW CHO) depended on an interaction between CO2 and endophyte infection. Infected plants contained significantly more carbohydrate than endophyte-free plants, and the difference was greatest in ambient CO2 conditions. Protein concentrations were also influenced by the interaction between CO2 and endophyte-infection. Endophyte-free plants had 40% lower concentrations of soluble protein under elevated CO2 than under ambient CO2, but this CO2 effect on soluble protein was largely absent in endophyte-infected plants. CO2, endophyte-infection and nitrogen interacted to influence the total chlorophyll concentration of the grass such that chlorophyll concentration was always lower in elevated CO2 but this decline was much greater in endophyte-free plants, particularly in conditions of high soil N. In the endophyte-infected plants, the concentrations of the pyrrolopyrazine alkaloid peramine depended on the interaction between CO2 and N fertilization such that peramine concentrations declined with increasing N at ambient CO2 but remained roughly constant across N levels at elevated CO2. A similar pattern was seen for the ergot alkaloid ergovaline. The biochemical responses of perennial ryegrass to elevated CO2 are clearly modified by the presence of endophytic fungi.  相似文献   

17.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2.  相似文献   

18.
We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4 photosynthetic pathways and how CO2 enrichment has affected species composition, plant growth responses, leaf properties and soil nutrient, carbon and water dynamics. Long-term effects of elevated CO2 on plant community composition and system processes in this sub-tropical grassland indicate very subtle changes in ecosystem functioning and no changes in species composition and dominance which could be ascribed to elevated CO2 alone. Species compositional data and soil δ13C isotopic evidence suggest no detectable effect of CO2 enrichment on C3:C4 plant mixtures and individual species dominance. Contrary to many general predictions C3 grasses did not become more abundant and C3 shrubs and trees did not invade the site. No season length stimulation of plant growth was found even after 5 years of exposure to CO2 concentrations averaging 610 μmol mol−1. Leaf properties such as total N decreased in the C3 but not C4 grass under elevated CO2 while total non-structural carbohydrate accumulation was not affected. Elevated CO2 possibly lead to increased end-of-season soil water contents and this result agrees with earlier studies despite the topographic water gradient being a confounding problem at our research site. Long-term CO2 enrichment also had little effect on soil carbon storage with no detectable changes in soil organic matter found. There were indications that potential soil respiration and N mineralization rates could be higher in soils close to the CO2 source. The conservative response of this grassland suggests that many of the reported effects of elevated CO2 on similar ecosystems could be short duration experimental artefacts that disappear under long-term elevated CO2 conditions.  相似文献   

19.
Summary We tested the hypothesis that C4 grasses are inferior to C3 grasses as host plants for herbivorous insects by measuring the relative performance of larvae of a graminivorous lepidopteran, Paratrytone melane (Hesperiidae), fed C3 and C4 grasses. Relative growth rates and final weights were higher in larvae fed a C3 grass in Experiment I. However, in two additional experiments, relative growth rates and final weights were not significantly different in larvae fed C3 and C4 grasses. We examined two factors which are believed to cause C4 grasses to be of lower nutritional value than C3 grasses: foliar nutrient levels and nutrient digestibility. In general, foliar nutrient levels were higher in C3 grasses. In Experiment I, protein and soluble carbohydrates were digested from a C3 and a C4 grass with equivalent efficiencies. Therefore, differences in larval performance are best explained by higher nutrient levels in the C3 grass in this experiment. In Experiment II, soluble carbohydrates were digested with similar efficiencies from C3 and C4 grasses but protein was digested with greater efficiency from the C3 grasses. We conclude (1) that the bundle sheath anatomy of C4 grasses is not a barrier to soluble carbohydrate digestion and does not have a nutritionally significant effect on protein digestion and (2) that P. melane may consume C4 grasses at compensatory rates.  相似文献   

20.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号