首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
AimsOxidative stress is involved in cholestasis-induced hepatic damage. Therefore, antioxidant therapy is a recommended therapeutic strategy. Studies have illustrated that chromium can enhance antioxidative capacity leading to a resolution of oxidative stress. The aim of this study was to assess whether chromium has protective effects against cholestasis-related liver damage.Main methodsCholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Rats were randomly divided into four groups. Control and BDL groups were subjected to sham and BDL operation, respectively, and were supplemented with placebo for 3 weeks. The BDL-post Cr group was supplemented with chromium chloride for 3 weeks after BDL operation. The BDL-pre Cr group was supplemented with chromium chloride for 6 weeks starting from 3 weeks before BDL operation.Key findingsIn comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, and fibrosis. These pathophysiological changes were attenuated in the BDL-Pre Cr and BDL-Post Cr groups. However, there was no significant difference between these two groups. The anti-fibrotic effect of chromium was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of transforming growth factor beta 1 (TGF-β1). In addition, chromium effectively attenuated BDL-induced hepatic oxidative stress.SignificanceThe data indicate that chromium attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of chromium is associated with antioxidative potential.  相似文献   

2.
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid that has been shown to possess health beneficial effects, including hepatoprotection. However, the molecular mechanism of DHA-mediated hepatoprotection is not fully understood. In the present study, we report the protective effect of DHA on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of DHA was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by chronic DHA supplementation. DHA alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), intereukin-1beta, connective tissue growth factor and collagen expression. The anti-fibrotic effect of DHA was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. DHA also attenuated BDL-induced leukocyte accumulation and nuclear factor-κB (NF-κB) activation. Further studies demonstrated an inhibitory effect of DHA on redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Taken together, the hepatoprotective, anti-inflammatory and anti-fibrotic effects of DHA seem to be multifactorial. The beneficial effects of chronic DHA supplementation are associated with anti-oxidative and anti-inflammatory potential as well as down-regulation of NF-κB and transforming growth factor beta/Smad signaling probably via interference with ERK activation.  相似文献   

3.
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Flavonoids have been shown to confer beneficial health effects, including hepatoprotection. However, the molecular mechanism of flavonoid-mediated hepatoprotection is incompletely understood. In this study, we report the protective effect of quercetin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Daily oral administration of quercetin was started 1 week before injury and lasted for 4 weeks. In comparison with the control group, the BDL group showed liver injury, as evidenced by histological changes, and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by daily quercetin supplementation. Quercetin alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), interleukin-1 beta, connective tissue growth factor and collagen expression. The antifibrotic effect of quercetin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. Quercetin also attenuated BDL-induced oxidative stress, leukocyte accumulation, nuclear factor (NF)-κB activation and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of quercetin on MyD88 and TGF-β-activated kinase-1 critical for linking toll-like receptor (TLR) and NF-κB. Taken together, the hepatoprotective, anti-inflammatory and antifibrotic effects of quercetin seem to be multifactorial. The beneficial effects of daily quercetin supplementation are associated with antioxidative and anti-inflammatory potential as well as down-regulation of NF-κB and TGF-β/Smad signaling, probably via interference with TLR signaling.  相似文献   

4.
BACKGROUND: Reactive oxygen species and oxidative stress are implicated in hepatic stellate cell activation and liver fibrosis, which are initiated by recruitment of inflammatory cells and by activation of cytokines. OBJECTIVE: The possible anti-oxidant and anti-inflammatory effects of ghrelin were evaluated in a hepatic fibrosis model in rats with bile duct ligation (BDL). METHODS: Under anesthesia, bile ducts of Sprague Dawley rats were ligated, and half of the rats were subcutaneously administered with ghrelin (10 ng/kg/day) and the rest with saline for 28 days. Sham-operated control groups were administered saline or ghrelin. On the 28th day of the study, rats were decapitated and malondialdehyde (MDA) content--an index of lipid peroxidation, and myeloperoxidase (MPO) activity--an index of neutrophil infiltration--were determined in the liver tissues. Oxidant-induced tissue fibrosis was determined by collagen contents, while the hepatic injury was analyzed microscopically. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage, respectively. Pro-inflammatory cytokines; TNF-alpha, IL-1beta and IL-6 were also assayed in plasma samples. RESULTS: In the saline-treated BDL group, hepatic MDA levels, MPO activity and collagen content were increased (p<0.001), suggesting oxidative organ damage, as confirmed histologically. In the ghrelin-treated BDL group, however, all of the oxidant responses were reversed significantly (p<0.05-p<0.001). Serum AST, ALT, LDH levels, and cytokines were elevated in the BDL group as compared to the control group, while this increase was significantly decreased by ghrelin treatment. CONCLUSION: Owing to the anti-inflammatory and anti-oxidant effect as demonstrated in our study, it is possible to speculate that exogenously administered ghrelin may possess an antifibrotic effect against biliary obstruction-induced liver fibrosis. Thus, it seems likely that ghrelin may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   

5.
6.
The aim of this study was to evaluate the possible protective effects of caffeic acid phenethyl ester (CAPE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 18 male Sprague–Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received CAPE; each group contain 6 animals. The rats in CAPE treated groups were given CAPE (10 μmol/kg) once a day intraperitoneally (i.p) for 2 weeks starting just after BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, inflammatory cell infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with CAPE attenuated alterations in liver histology. The proliferating cell nuclear antigen and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx)) activities. CAPE treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The data indicate that CAPE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of CAPE is associated with antioxidative potential.  相似文献   

7.
The aim of this study was to evaluate the possible protective effects of quercetin (QE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 24 male Wistar albino rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received QE; each group contain 8 animals. The rats in QE treated groups were given QE (15 mg/kg) once a day intraperitoneally for 4 weeks starting 3 days prior to BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with QE attenuated alterations in liver histology. The alpha smooth muscle actin (α-SMA), transforming growth factor beta (TGF-β1) positive cells and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The data indicate that QE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of QE is associated with antioxidative potential.  相似文献   

8.
Cholestatic liver disease is recognized by extreme collagen formation and deposition, which is mediated by free radicals. The aim of the current study was to investigate the probable hepatoprotective effects of hydroalcoholic extract of watercress (WC) against oxidative stress and liver injury in bile duct ligation (BDL)- induced cholestatic rats. A total of 32 male Wistar rats were divided into four groups; sham control (SC), BDL, SC + hydroalcoholic extract of WC and BDL + hydroalcoholic extract of WC. WC-treated rats received daily WC 500 mg/kg/day for 10 days. Biochemical tests, hepatic oxidative stress markers, and antioxidant enzymes activity were estimated. Further, liver hydroxyproline content was assayed and histological analysis was made. The BDL model markedly elevated the protein carbonyl (PCO) and hydroxyproline contents and decreased the glutathione peroxidase (GPx) activity. Hydroalcoholic extract of WC significantly decreased the surge in liver PCO and hydroxyproline levels and increased the reduced GPx enzyme activity contents in the hepatic tissue. As determined by hematoxylin and eosin staining, BDL considerably induced hepatocyte necrosis. Moreover, these changes were significantly attenuated by the hydroalcoholic extract of WC treatment. Our data indicate that the hydroalcoholic extract of WC extract attenuated liver damage in BDL rats by decreasing the hydroxyproline content and histopathological indexes. Also, it reduced oxidative stress by preventing the hepatic protein oxidation and enhancing the activity of the GPx enzyme via antioxidative effect and free-radical scavenging. Our findings suggest that hydroalcoholic extract of WC could be a beneficial new curative agent for cholestatic liver damage.  相似文献   

9.
TNFα, a mediator of hepatotoxicity in several animal models, is elevated in acute and chronic liver diseases. Therefore, we investigated whether hepatic injury and fibrosis due to bile duct ligation (BDL) would be reduced in TNFα knockout mice (TNFα−/−). Survival after BDL was 60% in wild-type mice (TNFα+/+) and 90% in TNFα−/− mice. Body weight loss and liver to body weight ratios were reduced in TNFα−/− mice compared to TNFα+/+ mice. Following BDL, serum alanine transaminases (ALT) levels were elevated in TNFα+/+ mice (268.6 ± 28.2 U/L) compared to TNFα−/− mice (105.9 U/L ± 24.4). TNFα−/− mice revealed lower hepatic collagen expression and less liver fibrosis in the histology. Further, α-smooth muscle actin, an indicator for activated myofibroblasts, and TGF-β mRNA, a profibrogenic cytokine, were markedly reduced in TNFα−/− mice compared to TNFα+/+ mice. Thus, our data indicate that TNFα induces hepatotoxicity and promotes fibrogenesis in the BDL model.  相似文献   

10.
Rutin has been shown to possess beneficial health effects, including hepatoprotection. However, to date, it has not been demonstrated to have a hepatoprotective effect against cholestatic liver injury. This is the first report to show a protective effect of rutin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Daily oral administration of rutin was started 1 week before injury and was maintained for 4 weeks. In comparison with the control group, the BDL group showed liver injury as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation, and oxidative stress. These pathophysiological changes were attenuated by rutin supplementation. Rutin alleviated BDL-induced transforming growth factor β1 (TGF-β1), interleukin-1β, connective tissue growth factor, and collagen expression. The antifibrotic effect of rutin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad2/3 activity critical to the fibrogenic potential of TGF-β1. Rutin attenuated BDL-induced oxidative stress, leukocyte accumulation, NF-κB activation, and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of rutin on the redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Rutin also attenuated BDL-induced reduction in NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and AMP-activated protein kinase (AMPK). Taken together, the beneficial effects of rutin were shown to be associated with antioxidative and anti-inflammatory effects as well as the downregulation of NF-κB and TGF-β/Smad signaling, probably via interference of ERK activation and/or enhancement of Nrf2, HO-1, and AMPK activity.  相似文献   

11.
Lee WY  Koh EJ  Lee SM 《Nitric oxide》2012,26(1):1-8
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50 mg/kg) was intraperitoneally administered 18 and 1 h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5 h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.  相似文献   

12.
Hepatocellular carcinoma (HCC), a leading cause of cancer related deaths is predominantly driven by chronic inflammatory responses. Due to asymptomatic nature and lack of early patient biopsies, precise involvement of inflammation in hepatic injury initiation remains unidentified. Aim of the study was to elucidate the regulation patterns of inflammatory signalling from initiation of hepatic injury to development of HCC. HCC mice model was established using DEN followed by repeated doses of CCl4 and sacrificed at three different stages of disease comprising 7, 14 and 21 weeks. Serum biochemical tests, hepatic lipids quantification, histopathology and qPCR analyses were conducted to characterize the initiation and progression of liver injury and inflammatory signalling. Notably, at 7 weeks, we observed hepatocyte damage and periportal necrotic bodies coupled with induction of Socs2/Socs3 and anti-inflammatory cytokine Il-10. At 14 weeks, mice liver showed advancement of liver injury with micro-vesicular steatosis and moderate collagen deposition around portal zone. With progression of injury, the expression of Socs3 was declined with further reduction of Il-10 and Tgf-β indicating the disturbance of anti-inflammatory mechanism. In contrast, pro-inflammatory cytokines Il1-β, Il6 and Tnf-α were upregulated contributing inflammation. Subsequently, at 21 weeks severe liver damage was estimated as characterized by macro-vesicular steatosis, perisinusoidal collagen bridging, immune cell recruitment and significant upregulation of Col-1α and α-Sma. In parallel, there was significant upregulation of pro/anti-inflammatory cytokines highlighting the commencement of chronic inflammation.Findings of the study suggest that differential regulation of cytokine suppressors and inflammatory cytokines might play role in the initiation and progression of hepatic injury leading towards HCC.  相似文献   

13.
The aim of this study was to examine the preventive and therapeutic effects of thymoquinone (TQ) against cholestatic oxidative stress and liver damage in common bile duct ligated rats. A total of 24 male Sprague–Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received TQ; each group contain 8 animals. The rats in TQ treated groups were given TQ (50 mg/kg body weight) once a day orally for 2 weeks starting 3 days prior to BDL operation. To date, no more biochemical and histopathological changes on common bile duct ligated rats by TQ treatment have been reported. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme [superoxide dismutase (SOD), glutathione peroxidase (GPx)] activities. TQ treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with TQ attenuated alterations in liver histology. The immunopositivity of alpha smooth muscle actin and proliferating cell nuclear antigen in BDL were observed to be reduced with the TQ treatment. The present study demonstrates that oral administration of TQ in bile duct ligated rats maintained antioxidant defenses and reduces liver oxidative damage and ductular proliferation. This effect of TQ may be useful in the preservation of liver function in cholestasis.  相似文献   

14.
The root extract of Operculina turpethum (OTE) has been used as an anti-inflammatory, purgative, and hepato-protective agent. N-Nitrosodimethylamine (NDMA) is a potent hepatotoxin that induces fibrosis of the liver. In the present study, we examined the therapeutic effects of OTE root extract against NDMA-induced hepatotoxicity and clastogenicity in rats. Hepatic fibrosis was induced in adult male albino rats through serial intraperitoneal administrations of NDMA at a concentration of 10 mg/kg body weight on three consecutive days of each week over a period of three weeks. A group of rats received OTE orally in doses of 75, 150 and 200 mg/kg body weight at 5 h after the administration of NDMA. The controls and treated animals were sacrificed on days-7, 14 and 21 after the start of the administration of NDMA. The progression of hepatic fibrosis as well as the amelioration effect of OTE was evaluated through histopathologically as well as by immunohistochemical staining for the activation of hepatic stellate cells. Alterations in serum and liver biochemical parameters and LDH isoenzymes were also studied. Serial administration of NDMA resulted in well formed fibrosis in the liver and induction of micronuclei in the bone marrow cells. Staining of α-SMA demonstrated activated stellate cells from day-7 onwards which was dramatically increased on day-21. An elevation of micronuclei count, liver function enzymes, serum hydroxyproline levels and LDH isoenzymes 4 and 5 were also observed. All these changes were remarkably reduced in OTE administered animals and fibrogenesis was completely absent. Our results suggest that OTE has hepatoprotective and anti-clastogenic effects against NDMA-induced hepatic fibrosis. Therefore OTE may be used as a hepatoprotective agent against various liver diseases including toxic liver injury.  相似文献   

15.
Previous studies suggested that betaine intake might antagonize the induction of oxidative stress-mediated acute liver injury through regulation of the sulfur-amino acid metabolism. In this study we examined the protective effects of betaine on chronic liver injury and fibrosis induced by dimethylnitrosamine (DMN). Male rats were supplemented with betaine (1%, w/v) in drinking water from 2 weeks prior to the initiation of DMN treatment (10 mg/(kg day), i.p., 3 days/week, for 1, 2, or 4 weeks) until sacrifice. Induction of liver injury was determined by quantifying serum alanine aminotransferase, aspartate aminotransferase activities, bilirubin levels, hepatic xenobiotic-metabolizing capacity, histopathological changes and 4-hydroxyproline levels. Development of oxidative injury was estimated by malondialdehyde (MDA) levels and total oxyradical scavenging capacity (TOSC) of liver and serum toward hydroxyl, peroxyl radicals, and peroxynitrite. Progressive changes in the parameters of liver injury and fibrosis were evident in the rats challenged with DMN. Elevation of MDA levels in liver was significant before the onset of a change in any parameters determined in this study. Betaine supplementation markedly attenuated the induction of hepatotoxicity and fibrosis by DMN. Elevation of MDA and the reduction of TOSC were also depressed significantly. Development of liver injury corresponded well with the induction of oxidative stress in rats treated with DMN, both of which are inhibited effectively by betaine supplementation. It is suggested that betaine may protect liver from fibrogenesis by maintaining the cellular antioxidant capacity.  相似文献   

16.
17.
Aged garlic extract (AGE) possesses multiple biological activities. We evaluated the protective effect of S-allyl cysteine (SAC), one of the organosulfur compounds of AGE, against carbon tetrachloride (CCl4)-induced acute liver injury in rats. SAC was administrated intraperitoneally (50-200 mg/kg). SAC significantly suppressed the increases of plasma ALT and LDH levels. SAC also attenuated histological liver damage. CCl4 administration induced lipid peroxidation accompanied by increases in the plasma malondialdehyde and hepatic 4-hydroxy-2-nonenal levels, and SAC dose-dependently attenuated these increases. The hepatic total level of hydroxyoctadecadienoic acid (HODE), a new oxidative stress biomarker, was closely correlated with the amount of liver damage. These results suggest that SAC decreased CCl4-induced liver injury by attenuation of oxidative stress, and may be a better therapeutic tool for chronic liver disease.  相似文献   

18.
Bile acid-induced apoptosis plays an important role in the pathogenesis of cholestatic liver disease, and its prevention is of therapeutic interest. The aim of this study was to test whether the andrographolide limits the evolution of apoptosis in a murine model of bile duct ligation (BDL)-induced hepatic fibrosis. Male Sprague–Dawley rats were divided into four groups and hepatic apoptosis was induced by BDL for 2 weeks. The BDL animals were also treated with andrographolide (50, 100, and 200 mg/kg, i.p.) during the same time period. BDL-induced liver injury was associated with apoptosis and fibrosis, and the latter was significantly reduced in animals receiving andrographolide. The increase in serum alanine aminotransferase, asparate aminotransferase, tumor necrosis factor-α and IL-1β levels caused by BDL were also significantly reduced by treatment with andrographolide. Andrographolide decreased the intrahepatic protein levels of cannabinoid receptor 1 (CB1), Bax, and cytochrome c, along with of α-smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β), two markers of fibrogenesis. This effect was mediated by the inactivation of the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2) phosphorylation cascade, but it did not affect the p38 mitogen-activated protein kinase pathway. Additionally, andrographolide reduced the generation of hepatic lipid peroxidation and enhance senescence marker protein-30 levels to resist the hepatic oxidative stress in the presence of BDL. In conclusion, this study has identified AP as a potent protector against cholestasis-induced apoptosis in vivo. Its anti-apoptotic action largely relies on the inhibition of the oxidative stress pathway.  相似文献   

19.

Aims

To evaluate the hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the early diagnosis of hepatic fibrosis and cirrhosis and assessment of liver function in a rat model.

Main methods

In 2 groups of SD rats, liver fibrosis was induced in experimental animals by repetitive carbon tetrachloride injections, while the control group received saline injections. Five experimental rats and 2 control rats were randomly selected at weeks 4, 8, 12. One week after carbon tetrachloride administration, MRI (FIRM T1WI) scan was performed. Gd-EOB-DTPA (0.08 mL) was injected into the rat's tail vein and hepatocyte phase images were obtained after 20 min. The pre-enhanced phase and hepatocyte phase signal intensities (SI) were measured, and the relative contrast enhancement index (RCEI) was calculated. ANOVA analysis (LSD) of RCEI values in controls (n = 6), hepatic fibrosis (n = 7), and histopathologically-determined early cirrhosis group (n = 6) was performed.

Key findings

RECI values showed a decreasing trend in the control group, hepatic fibrosis and early cirrhosis groups (1.11 ± 0.43, 0.96 ± 0.22, and 0.57 ± 0.33, respectively). While the difference between the control and early cirrhosis groups was statistically significant (p = 0.013), there was no significant difference in the hepatic fibrosis group vs the control (p = 0.416) and the hepatic fibrosis group vs the early cirrhosis group (p = 0.054).

Significance

Hepatocyte phase RCEI values obtained with Gd-EOB-DTPA-enhanced MRI scan indicate liver injury in hepatic fibrosis and early cirrhosis. RCEI values are helpful for early diagnosis of liver cirrhosis.  相似文献   

20.
Sphingolipids constitute bioactive molecules with functional implications in homeostasis and pathogenesis of various diseases. However, the role of sphingolipids as possible disease biomarkers in chronic liver disease remains largely unexplored. In the present study we used mass spectrometry and spectrofluorometry methods in order to quantify various sphingolipid metabolites and also assess the activity of an important corresponding regulating enzyme in the serum of 72 healthy volunteers as compared to 69 patients with non-alcoholic fatty liver disease and 69 patients with chronic hepatitis C virus infection. Our results reveal a significant upregulation of acid sphingomyelinase in the serum of patients with chronic liver disease as compared to healthy individuals (p < 0.001). Especially in chronic hepatitis C infection acid sphingomyelinase activity correlated significantly with markers of hepatic injury (r = 0.312, p = 0.009) and showed a high discriminative power. Accumulation of various (dihydro-) ceramide species was identified in the serum of patients with non-alcoholic fatty liver disease (p < 0.001) and correlated significantly to cholesterol (r = 0.448, p < 0.001) but showed a significant accumulation in patients with normal cholesterol values as well (p < 0.001). Sphingosine, a further bioactive metabolite, was also upregulated in chronic liver disease (p < 0.001). However, no significant correlation to markers of hepatic injury was identified. Conclusion: Chronic hepatitis C virus infection and non-alcoholic fatty liver disease induce a significant upregulation of serum acid sphingomyelinase which appears as a novel biomarker in chronic hepatopathies. Further studies are required to elucidate the potential of the sphingolipid signaling pathway as putative therapeutic target in chronic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号