首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How eukaryotic pathogens export and sort membrane-bound proteins destined for host-cell compartments is still poorly understood. The dense granules of the intracellular protozoan Toxoplasma gondii constitute an unusual secretory pathway that allows soluble export of the GRA proteins which become membrane-associated within the parasite replicative vacuole. This process relies on both the segregation of the proteins routed to the dense granules from those destined to the parasite plasma membrane and on the sorting of the secreted GRA proteins to their proper final membranous system. Here, we provide evidence that the soluble trafficking of GRA6 to the dense granules relies on the N-terminal domain of the protein, which is sufficient to prevent GRA6 targeting to the parasite plasma membrane. We also show that the GRA6 N-terminal domain, possibly by interacting with negatively charged lipids, is fundamental for proper GRA6 association with the vacuolar membranous network of nanotubes. These results support our emerging model: sorting of transmembrane GRA proteins to the host cell vacuole is mainly driven by the dual role of their N-terminal hydrophilic domain and is compartmentally regulated.  相似文献   

2.
A critical step in infection by the apicomplexan parasite Toxoplasma gondii is the formation of a membrane-bound compartment within which the parasite proliferates. This process relies on a set of secretory organelles that discharge their contents into the host cell upon invasion. Among these organelles, the dense granules are specialized in the export of transmembrane (TM) GRA proteins, which are major components of the mature parasitophorous vacuole (PV) membrane. How eukaryotic pathogens export and sort membrane-bound proteins destined for the host cell is still poorly understood at the mechanistic level. In this study, we show that soluble trafficking of the PV-targeted GRA5 TM protein is parasite specific: when expressed in mammalian cells, GRA5 is targeted to the plasma membrane and behaves as an integral membrane protein with a type I toplogy. We also demonstrate the dual role of the GRA5 N-terminal ectodomain, which is sufficient to prevent membrane integration within the parasite and is essential for both sorting and post-secretory membrane insertion into the vacuolar membrane. These results contrast with the general rule that states that information contained within the cytoplasmic tail and/or the TM domain of integral membrane proteins dictates their cellular localization. They also highlight the diversity of sorting mechanisms that leads to the specialization of secretory processes uniquely adapted to intracellular parasitism.  相似文献   

3.
Toxoplasma gondii, as many intracellular parasites, is separated from the cytosol of its host cell by a parasitophorous vacuole membrane (PVM). This vacuole forms during host cell invasion and parasite apical organelles named rhoptries discharge proteins that associate with its membrane during this process. We report here the characterization of the rhoptry protein ROP5, which is a new member of the ROP2 family. Contrasting with what is known for other ROP2 family proteins, ROP5 is not processed during trafficking to rhoptries. We show here that ROP5 is secreted during invasion and associates with the PVM. Using differential permeabilization of infected cells, we have shown that ROP5 exposes its C-terminus towards the host cell cytoplasm, which corresponds to a reverse topology compared with ROP2 and ROP4. Taken together with recent modelling data suggesting that the C-terminal hydrophobic domain hitherto described as transmembrane may correspond to a hydrophobic helix buried in the catalytic domain of kinase-related proteins, these findings call for a reappraisal of the current view of ROP2 family proteins association with the PVM.  相似文献   

4.
Important components of the parasitophorous vacuole in which the intracellular protozoan parasite Toxoplasma gondii develops, comprise proteins secreted from apicomplexan specific secretory organelles named the dense granules. Here, we confirm by immunofluorescence and by cryo-electron microscopy that the recently isolated B10 protein (318 amino acids, 41kDa) is a new dense granule protein that should now be referred to as GRA9. Within the vacuolar compartment, GRA9, like GRA2, GRA4 and GRA6, associates with the network of tubular membranes connected to the parasitophorous vacuole delimiting membrane. Like the other GRA proteins, GRA9 is secreted into the vacuole from the anterior end of the parasite. However, unlike GRA2 or GRA6, GRA9 does not transit by the posterior invaginated pocket of the parasite where the network first assembles. Within the dense granules, GRA9 exists in both a soluble and an insoluble state. Like the other GRA proteins, GRA9 is secreted as a soluble form only and like most of the GRA proteins, two forms of GRA9 of the similar molecular weight are detected within the vacuolar space: a soluble form and a membrane associated form. The dual properties of GRA9 are not only ascribed by the presence of amphipathic and hydrophobic alpha-helices but also by the fact that the protein is mainly hydrophilic.  相似文献   

5.
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.  相似文献   

6.
Toxoplasma gondii dense granule proteins (GRAs) are secreted abundantly in both the tachyzoite and bradyzoite stages of the parasite and are known to localize to various compartments of the parasitophorous vacuole (PV) that interfaces with the host cell milieu. Thus, GRAs may play significant roles in the biogenesis of the PV that is important for survival of intracellular T. gondii. GRA10 is a dense granule protein whose role in T. gondii has not yet been characterized. Therefore, in this study, we endeavored to determine the role of GRA10 in the growth and survival of intracellular T. gondii by using phosphorodiamidate morpholino oligomers (PPMOs) antisense knockdown approach to disrupt the translation of GRA10 mRNA in the parasites. We expressed and purified a truncated recombinant GRA10 protein to generate anti-GRA10 polyclonal antibodies that we used to characterize GRA10 in T. gondii. We found that GRA10 is a soluble, dense granule-associated protein that is secreted into the parasite cytosol and the parasitophorous vacuole milieu. Using in vitro cultures, we found that knockdown of GRA10 results in severe inhibition of T. gondii growth in human fibroblasts and in ovine monocytic cells. Together, our findings define GRA10 as a dense granule protein that plays a significant role in the growth and propagation of intracellular T. gondii in human fibroblasts and in ovine monocytic cells.  相似文献   

7.
Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.  相似文献   

8.
Monoclonal antibodies (mAbs) against Toxoplasma gondii, Tg378 and Tg556 clones, are specifically observed to localize to the dense granules of tachyzoites by immunofluorescence microscopy. mAb Tg556 is directed against GRA3, a previously described 30kDa dense granular protein. mAb Tg378 is directed against a novel 36kDa dense granular protein, which we refer to as GRA10. These are major proteins in the excretory/secretory proteins from T. gondii before the parasite's entry into host cells, and they are released into the parasitophorous vacuole (PV) during or shortly after invasion to be associated with the PV membrane. GRA10 binds to the membrane of the host cells regardless of its anchorage-dependence or -independence. The cDNA sequence encoding GRA10 was determined by screening a T. gondii cDNA expression library with mAb Tg378. The deduced amino acid sequence of GRA10 consists of a polypeptide of 364 amino acids, and it has no significant homology to any other known proteins. The sequence contains amino terminal signal peptides and two potential transmembrane domains in the middle of sequence that are not near the carboxy terminus. GRA10 has a RGD motif between the two potential transmembrane domains.  相似文献   

9.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

10.
A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5''-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.  相似文献   

11.
Toxoplasma gondii replicates within a specialized vacuole surrounded by the parasitophorous vacuole membrane (PVM). The PVM forms intimate interactions with host mitochondria and endoplasmic reticulum (ER) in a process termed PVM-organelle association. In this study we identify a likely mediator of this process, the parasite protein ROP2. ROP2, which is localized to the PVM, is secreted from anterior organelles termed rhoptries during parasite invasion into host cells. The NH(2)-terminal domain of ROP2 (ROP2hc) within the PVM is exposed to the host cell cytosol, and has characteristics of a mitochondrial targeting signal. In in vitro assays, ROP2hc is partially translocated into the mitochondrial outer membrane and behaves like an integral membrane protein. Although ROP2hc does not translocate across the ER membrane, it does exhibit carbonate-resistant binding to this organelle. In vivo, ROP2hc expressed as a soluble fragment in the cytosol of uninfected cells associates with both mitochondria and ER. The 30-amino acid (aa) NH(2)-terminal sequence of ROP2hc, when fused to green fluorescent protein (GFP), is sufficient for mitochondrial targeting. Deletion of the 30-aa NH(2)-terminal signal from ROP2hc results in robust localization of the truncated protein to the ER. These results demonstrate a new mechanism for tight association of different membrane-bound organelles within the cell cytoplasm.  相似文献   

12.
Amphipathic alpha-helices have been proposed as the general means used by soluble proteins to induce membrane tubulation. Previous studies had shown that the GRA2 dense granule protein of Toxoplasma gondii would be a crucial protein for the formation of the intravacuolar membranous nanotubular network (MNN) and that one of the functions of the MNN is to organise the parasites within the parasitophorous vacuole. GRA2 is a small protein (185 amino acids), predicted to contain three amphipathic alpha-helices (alpha1: 70-92; alpha2: 95-110 and alpha3: 119-139) when using the standard programs of secondary structure prediction. To investigate the respective contribution of each alpha-helix in the GRA2 functions, we used DeltaGRA2-HXGPRT knock-out complementation: eight truncated forms of GRA2 were expressed in the deleted recipient and the phenotypes of these mutants were analysed. This study showed that: (i) alpha3, when associated with the N-terminal region (NT) and the C-terminal region (CT), is sufficient to target the protein to the parasite posterior end and to induce formation of membranous vesicles within the vacuole. However, when associated only with CT, alpha3 is not sufficient to provide the hydrophobicity required for membrane association; (ii) the alpha1alpha2 region is alone not sufficient to induce membrane tubulation within the PV; and (iii) only one mutant, NT-alpha1alpha2alpha3, restores most of the biochemical and functional properties of GRA2, including traffic to the dense granules, secretion into the vacuole, association with vacuolar membranes, induction of the MNN formation and organisation of the parasites within the vacuole.  相似文献   

13.
Toxoplasma gondii uses specialized secretory organelles called rhoptries to deliver virulence determinants into the host cell during parasite invasion. One such determinant called rhoptry protein 18 (ROP18) is a polymorphic serine/threonine kinase that phosphorylates host targets to modulate acute virulence. Following secretion into the host cell, ROP18 traffics to the parasitophorous vacuole membrane (PVM) where it is tethered to the cytosolic face of this host–pathogen interface. However, the functional consequences of PVM association are not known. In this report, we show that ROP18 mutants altered in an arginine‐rich domain upstream of the kinase domain fail to associate to the PVM following secretion from rhoptries. During infection, host cells upregulate immunity‐related GTPases that localize to and destroy the PVM surrounding the parasites. ROP18 disarms this host innate immune pathway by phosphorylating IRGs in a critical GTPase domain and preventing loading on the PVM. Vacuole‐targeting mutants of ROP18 failed to phosphorylate Irga6 and were unable to divert IRGs from the PVM, despite retaining intrinsic kinase activity. As a consequence, these mutants were avirulent in a mouse model of acute toxoplasmosis. Thus, the association of ROP18 with the PVM, mediated by its N‐terminal arginine‐rich domain, is critical to its function as a virulence determinant.  相似文献   

14.
All known proteins that accumulate in the vacuolar space surrounding the obligate intracellular protozoan parasite Toxoplasma gondii are derived from parasite dense granules. To determine if constitutive secretory vesicles could also mediate delivery to the vacuolar space, T. gondii was stably transfected with soluble Escherichia coli alkaline phosphatase and E. coli β-lactamase. Surprisingly, both foreign secretory reporters were delivered quantitatively into parasite dense granules and efficiently secreted into the vacuolar space. Addition of a glycosylphosphatidylinositol membrane anchor rerouted alkaline phosphatase to the parasite surface. Alkaline phosphatase fused to the transmembrane domain and cytoplasmic tail from the endogenous dense granule protein GRA4 localized to dense granules. The protein was secreted into a tuboreticular network in the vacuolar space, in a fashion dependent upon the cytoplasmic tail, but not upon a tyrosine-based motif within the tail. Alkaline phosphatase fused to the vesicular stomatitis virus G protein transmembrane domain and cytoplasmic tail localized primarily to the Golgi, although staining of dense granules and the intravacuolar network was also detected; truncating the cytoplasmic tail decreased Golgi staining and increased delivery to dense granules but blocked delivery to the intravacuolar network. Targeting of secreted proteins to T. gondii dense granules and the plasma membrane uses general mechanisms identified in higher eukaryotic cells but is simplified and exaggerated in scope, while targeting of secreted proteins beyond the boundaries of the parasite involves unusual sorting events.  相似文献   

15.
The obligate intracellular parasite Toxoplasma gondii secretes a vast variety of effector molecules from organelles known as rhoptries (ROPs) and dense granules (GRAs). ROP proteins are released into the cytosol of the host cell where they are directed to the cell nucleus or to the parasitophorous vacuole (PV) membrane. ROPs secrete proteins that enable host cell penetration and vacuole formation by the parasites, as well as hijacking host-immune responses. After invading host cells, T. gondii multiplies within a PV that is maintained by the parasite proteins secreted from GRAs. Most GRA proteins remain within the PV, but some are known to access the host cytosol across the PV membrane, and a few are able to traffic into the host-cell nucleus. These effectors bind to host cell proteins and affect host cell signaling pathways to favor the parasite. Studies on host–pathogen interactions have identified many infection-altered host signal transductions. Notably, the relationship between individual parasite effector molecules and the specific targeting of host-signaling pathways is being elucidated through the advent of forward and reverse genetic strategies. Understanding the complex nature of the host–pathogen interactions underlying how the host-signaling pathway is manipulated by parasite effectors may lead to new molecular biological knowledge and novel therapeutic methods for toxoplasmosis. In this review, we discuss how T. gondii modulates cell signaling pathways in the host to favor its survival.  相似文献   

16.
Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling. Here, we have functionally characterized the T. gondii aspartyl protease 5 (ASP5), a Golgi-resident protease that is phylogenetically related to Plasmepsin V. We show that deletion of ASP5 causes a significant loss in parasite fitness in vitro and an altered virulence in vivo. Furthermore, we reveal that ASP5 is necessary for the cleavage of GRA16, GRA19 and GRA20 at the PEXEL-like motif. In the absence of ASP5, the intravacuolar nanotubular network disappears and several GRAs fail to localize to the PVM, while GRA16 and GRA24, both known to be targeted to the host cell nucleus, are retained within the vacuolar space. Additionally, hypermigration of dendritic cells and bradyzoite cyst wall formation are impaired, critically impacting on parasite dissemination and persistence. Overall, the absence of ASP5 dramatically compromises the parasite’s ability to modulate host signalling pathways and immune responses.  相似文献   

17.
The expression and distribution of dense granule proteins in the enteric (coccidian) forms of Toxoplasma gondii in the small intestine of the cat. Experimental Parasitology 91, 203-211. The expression and location of the dense granule proteins (GRA1-6 and NTPase) in the merozoite and during asexual and sexual development of Toxoplasma gondii in the small intestine of the cat (definitive host) was examined by immuno-light and electron microscopy. This was compared with that of tachyzoites and bradyzoites present in the intermediate host. It was found that the merozoite contained the characteristic apical organelles plus a few large dense granules. By immunocytochemistry, dense granules in merozoites were negative for GRA proteins 1 to 6 in contrast to both tachyzoites and bradyzoites in which dense granules were positive for all six proteins. The GRA proteins were associated with the parasitophorous vacuole (PV) during tachyzoite and bradyzoite development but were absent from the PV of the enteric stages. However, the merozoite dense granules were positive for NTPase, which was similar to the tachyzoite while this antigen was down regulated in the bradyzoite. The apparent release of the NTPases into the PV formed by merozoites was also similar to that described for the tachyzoite, possibly reflecting the relative metabolic activity of the various stages. This study shows that the majority of GRA proteins have a similar stage-specific expression, which is independent of NTPases expression. These observations are consistent with T. gondii having a different host parasite relationship in the enteric forms, which does not involve the GRA proteins 1-6.  相似文献   

18.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

19.
Molecular partitioning during host cell penetration by Toxoplasma gondii   总被引:1,自引:1,他引:0  
During invasion by Toxoplasma gondii, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole membrane (PVM) by the tight apposition of host and parasite cellular membranes. Previous studies suggested that the basis for the selective partitioning of membrane constituents may be a preference for membrane microdomains, and this hypothesis was herein tested. The partitioning of a diverse group of molecular reporters for raft and nonraft membrane subdomains was monitored during parasite invasion by time-lapse video or confocal microscopy. Unexpectedly, both raft and nonraft lipid probes, as well as both raft and nonraft cytosolic leaflet proteins, flowed unhindered past the host-parasite junction into the PVM. Moreover, neither a raft-associated type 1 transmembrane protein nor its raft-dissociated counterpart accessed the PVM, while a multispanning membrane raft protein readily did so. Considered together with previous data, these studies demonstrate that selective partitioning at the host-parasite interface is a highly complex process, in which raft association favors, but is neither necessary nor sufficient for, inclusion into the T. gondii PVM.  相似文献   

20.
The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号