首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of sensitized guinea pig tracheal rings or human bronchial strips to specific antigen in vitro resulted in a rapidly developing, prolonged contraction that was resistant to washing. Treatment of the tissue with diphenhydramine, a histamine H1 antagonist, before antigen delayed the onset and decreased the amplitude of the initial phase of the contraction but did not reduce the duration. Diphenhydramine treatment after development of the contraction did not relax the airway tissue. Antigen-induced histamine release from guinea pig trachea and from human bronchus was complete within the initial 15% of the duration of the contraction. Treatment of sensitized airway tissue with FPL 55712, a SRS-A antagonist, before antigen selectively inhibited the prolonged phase of the response. FPL 55712 administration after the development of antigen-induced contraction resulted in relaxation. These data suggest that both histamine and SRS-A are involved in the response of sensitized guinea pig and human airway tissue to antigen, with histamine mediating the early phase of the contraction and SRS-A primarily mediating the protracted phase.  相似文献   

2.
We examined the possible role of cyclooxygenase (COX) in charybdotoxin (ChTX)-induced oscillatory contraction in guinea pig trachea. Involvement of prostaglandin E(2) (PGE(2)) in ChTX-induced oscillatory contraction was also investigated. ChTX (100 nM) induced oscillatory contraction in guinea pig trachea. The mean oscillatory frequency induced by ChTX was 10.7 +/- 0.8 counts/h. Maximum and minimum tensions within ChTX-induced oscillatory contractions were 68.4 +/- 1.8 and 14.3 +/- 1.7% compared with K(+) (72.7 mM) contractions. ChTX-induced oscillatory contraction was completely inhibited by indomethacin, a nonselective COX inhibitor. Valeryl salicylate, a selective COX-1 inhibitor, did not significantly inhibit this contraction, whereas N-(2-cyclohexyloxy-4-nitro-phenyl)-methanesulfonamide, a selective COX-2 inhibitor, abolished this contraction. Exogenously applied arachidonic acid enhanced ChTX-induced oscillatory contraction. SC-51322, a selective PGE receptor subtype EP(1) antagonist, significantly inhibited ChTX-induced oscillatory contraction. Exogenously applied PGE(2) induced only a slight phasic contraction in guinea pig trachea, but PGE(2) induced strong oscillatory contraction after pretreatment with indomethacin and ChTX. Moreover, ChTX time-dependently stimulated PGE(2) generation. These results suggest that ChTX specifically activates COX-2 and stimulates PGE(2) production and that ChTX-induced oscillatory contraction in guinea pig trachea is mediated by activation of EP(1) receptor.  相似文献   

3.
Specific radioimmunoassays were used to demonstrate the synthesis by the guinea pig trachea of 6-keto PGF, TxB2, and PGF in addition to PGE2. The rank order of both spontaneous and stimulated release was PGE2 > PGF2α > 6-keto PGF = TxB2. Ovalbumin-induced prostanoid release from sensitized tissue was antigen-specific. The release was unlikely to be a secondary consequence of tracheal contraction since incubations with calcium ionophore A23187, at a concentration which produces an equivalent magnitude of contraction of sensitized trachea, did not induce a significant PG or Tx production. In contrast, significantly higher prostanoid synthesis was induced by A23187 in unsensitized than sensitized trachea. Thus sensitization altered the profile of arachidonic acid metabolism evoked by the ionophore.  相似文献   

4.
The 5-lipoxygenase (5-LO) inhibitors BI-L-239 and A-64077 were compared with the 5-LO translocation inhibitor MK-886 for the ability to inhibit leukotriene B4 (LTB4) biosynthesis by chopped (1 mm3) guinea pig lung. LTB4 synthesis by ovalbumin-sensitized chopped lung tissue was determined after stimulation with either calcium ionophore (A23187) or antigen. With A23187 stimulation, MK-886 was more potent (IC50 = 0.39 +/- 0.23 microM, mean +/- SEM, p < 0.01) than BI-L-239 (IC50 = 2.48 +/- 0.46 microM) or A-64077 (IC50 = 4.68 +/- 0.70 microM) and BI-L-239 was more potent than A64077 (p < 0.02). Thus, the order of potency was MK-886 > BI-L-239 > A-64077 for inhibition of calcium ionophore-induced LTB4 generation. There was no significant differences in potency of the compounds in chopped lung stimulated with antigen: IC50 for LTB4 synthesis by A-64077 = 3.31 +/- 1.70 microM, for BI-L-239 = 9.06 +/- 4.94 microM, and for MK-886 = 13.33 +/- 7.91 microM. The ability of these compounds to inhibit contraction of tracheal tissue from actively sensitized guinea pigs in response to antigen was also determined in the presence of indomethacin (15 micrograms/ml), mepyramine, and atropine (5 micrograms each/ml). Both 5-LO inhibitors inhibited antigen-induced contraction, with IC50 values for BI-L-239 and A-64077 of 1.58 and 4.35 microM respectively. MK-886 was ineffective at inhibiting antigen-induced tracheal contraction in vitro at concentrations up to 30 microM. In summary, these compounds inhibit antigen-induced and A23187-induced leukotriene biosynthesis in guinea pig tissue. These 5-LO inhibitors were similarly effective at inhibiting antigen-induced tracheal contraction where MK-886 was ineffective.  相似文献   

5.
We compared the effects of the leukotriene (LT) D4 receptor antagonist FPL55712 and some lipoxygenase inhibitors on contractions of isolated guinea-pig trachea induced by antigen (ovalbumin, OA) and calcium ionophore A23187 in the presence of the cyclooxygenase inhibitor indomethacin (5 microM), and by arachidonic acid (AA), melittin and LTD4. FPL55712 (0.1 and 1 microM) inhibited contractions induced by AA (100 microM) and the phospholipase A2 activator melittin (3 micrograms/ml), while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 10 microM) was a more effective inhibitor of the melittin response than the AA response. FPL55712 inhibited contractions induced by OA (100 micrograms/ml) more than by A23187 (1 microgram/ml), and these inhibitory effects of FPL55712 were much less in the presence of l-serine-borate complex (45 mM), an inhibitor of LTC4 conversion to LTD4. NDGA (10 microM) had no significant effect on the OA response, whereas the lipoxygenase inhibitors 1-phenyl-3-pyrazolidone (phenidone, 10 microM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 microM) clearly inhibited it. In contrast, NDGA and phenidone inhibited the A23187 response, but ETYA had no effect on it. FPL55712, phenidone and ETYA, but not NDGA, had a large inhibitory effect on LTD4-induced contractions, but these inhibitors had no effect on histamine-induced contractions. These results suggest that in the guinea-pig trachea inhibitors of LTD4-induced contractions decrease antigen-induced contractions, whereas lipoxygenase inhibitors reduce the contraction to A23187.  相似文献   

6.
To study the role of neutral endopeptidase (NEP) on endothelin-1-induced contraction of the airway smooth muscle, we examined the contractile effect of endothelin-1 in the isolated guinea pig trachea and human bronchus in the presence or absence of NEP inhibitor phosphoramidon. After incubation with phosphoramidon (10(-8) to 10(-5) M), we added endothelin-1 cumulatively from 10(-11) to 10(-7) M to the airway tissues in organ baths. Phosphoramidon significantly potentiated the endothelin-1-induced contraction in a concentration-dependent fashion in both guinea pig trachea and human bronchus, and it shifted the concentration-response curves to the left. Because NEP is known to cleave tachykinins, we next studied whether endothelin-1 contracts airway tissues by releasing endogenous tachykinins from bronchial C-fibers. After incubation with phosphoramidon (10(-5) M), we added endothelin-1 cumulatively from 10(-11) to 10(-7) M to the tissues that were treated with capsaicin to deplete the tachykinins. Phosphoramidon significantly potentiated the endothelin-1-induced contraction in the capsaicin-treated tissues, suggesting that endothelin-1 causes the contraction, at least in part, without releasing tachykinins. In contrast to the effect of phosphoramidon, captopril (an angiotensin-converting enzyme inhibitor), leupeptin (a serine protease inhibitor), and bestatin (an aminopeptidase inhibitor) did not modulate the effect of endothelin-1-induced contraction in both guinea pig trachea and human bronchus. From these results, we conclude that NEP plays an important role in regulating endothelin-1-induced contraction in the guinea pig trachea and human bronchus.  相似文献   

7.
L-660,711 (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethyl amino-3-oxo propyl)thio)methyl)thio)propanoic acid is a potent and selective competitive inhibitor of [3H]leukotriene D4 binding in guinea pig (Ki value, 0.22 nM) and human (Ki value, 2.1 nM) lung membranes but is essentially inactive versus [3H]leukotriene C4 binding (IC50 value in guinea pig lung, 23 microM). Functionally it competitively antagonized contractions of guinea pig trachea and ileum induced by leukotriene (LT) D4 (respective pA2 values, 9.4 and 10.5) and LTE4 (respective pA2 values, 9.1 and 10.4) and contractions of human trachea induced by LTD4 (pA2 value, 8.5). L-660,711 (5.8 x 10(-8)M) antagonized contractions of guinea pig trachea induced by LTC4 in the absence (dose ratio = 28) but not in the presence of 45 mM L-serine borate (dose ratio less than 2). L-660,711 (1.9 x 10(-5)M) did not block contractions of guinea pig trachea induced by histamine, acetylcholine, 5-hydroxytryptamine, PGF2 alpha, U-44069, or PGD2. In the presence of atropine, mepyramine, and indomethacin, L-660,711 (1.9 x 10(-5)M) inhibited a small component of the response to antigen on guinea pig trachea but completely blocked anti-IgE-induced contractions of human trachea. L-660,711 (i.v.) antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. LTC4, LTD4, and LTE4 but did not block bronchoconstriction to arachidonic acid, U-44069, 5-hydroxytryptamine, histamine, or acetylcholine. Intraduodenal L-660,711 antagonized LTD4 (0.2-12.8 micrograms/kg)-induced bronchoconstriction in guinea pigs, and p.o. L-660,711 blocked LTD4- and Ascaris-induced bronchoconstriction in conscious squirrel monkeys and ovalbumin-induced bronchoconstriction in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile of L-660,711 indicates that it is a potent, selective, orally active leukotriene receptor antagonist which is well suited to determine the role played by LTD4 and LTE4 in asthma and other pathophysiologic conditions.  相似文献   

8.
Three fractions (n-butanol, F2, and L5), isolated from an aqueous extract of Desmodium adscendens, a plant used in Ghana for the management of asthma, were evaluated for their pharmacological activity using ovalbumin and arachidonic acid-induced contractions of guinea pig airways. All three fractions inhibited the ovalbumin-induced contractions of indomethacin-pretreated tracheal spirals from sensitized animals dose dependently, but only L5 and n-butanol inhibited such contractions in the absence of indomethacin. The concentrations required to inhibit ovalbumin-induced contractions of lung parenchymal strips were threefold higher than with trachea. The contractile response over a 60-min period was divided into three phases. F2 and n-butanol inhibited all phases, whereas L5 inhibited only the late phase. n-Butanol and L5 inhibited arachidonic acid-induced contractions on indomethacin-pretreated tracheal spirals, a leukotriene-dependent reaction. There was no inhibition of arachidonic acid-induced contractions of lung parenchymal strips, which is largely a thromboxane-dependent reaction. The results suggest that D. adscendens contains several pharmacologically active substances that can inhibit allergic airway smooth muscle contraction at multiple sites, including the synthesis and (or) activity of the bronchoconstrictor leukotrienes.  相似文献   

9.
A series of desamino-2-nor-leukotriene analogs has been prepared by the reaction of various thiols with several methyl trans-4,5-epoxy-6Z-alkenoates, followed by deprotection. The products were assessed for their ability to antagonize the LTD4-induced contraction of the isolated guinea pig trachea. Several compounds displayed potent leukotriene antagonist activity, i.e., KB values in the sub-micromolar range, while only minimally affecting basal airway tone. The most potent analog, 4-hydroxy-5-(2-carboxyethylthio)-6Z-nonadecenoic acid, antagonized both LTD4- and LTE4-induced contractions of the trachea in an apparently competitive fashion. These agents possess increased potency relative to SK&F 101132, the first leukotriene analog identified as having LT-antagonist activity. Thus, these results demonstrate that deletion of the peptide amino group can produce leukotriene analogs which have minimal intrinsic contractile activity on the isolated guinea pig trachea, yet possess potent leukotriene-antagonistic effects.  相似文献   

10.
The effect of (9, 11), (11, 12)-didedoxa-9 alpha, 11-alpha-dimethylmethano-11,12-methano-13,14-dihydro-13-aza-14-oxo -15-cyclo-pentyl-16, 17, 18, 19, 20-pentanor-15-epi-TxA2 (ONO-3708) on 9,11-methanoepoxy-prostaglandin H2 (U-46619)-induced contraction of airway smooth muscle in the guinea pigs and human in vitro and bronchoconstriction in guinea pigs in vivo was investigated. In in vitro experiments, ONO-3708 inhibited the U-46619-induced contraction of isolated guinea pig and human tracheal smooth muscle in a dose related fashion (guinea pig; pA2=7.78, human; pA2 = 7.43). The contractions of guinea pig tracheal muscle caused by histamine and leukotriene D4 (LTD4) were not inhibited by ONO-3708. In in vivo experiments, intravenous injection of ONO-3708 at doses between 1 and 20 mg/kg inhibited the U-46619-induced increase of airway insufflation pressure as measured by Konzett-R?ssler method. In addition, ONO-3708 inhibited the U-46619-induced increase in airway reactivity to acetylcholine. These data suggest that ONO-3708 has possible therapeutic utility for asthma in which TxA2 participates.  相似文献   

11.
Arachidonic acid (AA) and ovalbumin (OA) were used to induce contractions of sensitized guinea pig tracheal spiral (indomethacin-pretreated) and lung parenchymal strip preparations. This model was used to examine the properties of three leukotriene (LT) D4 antagonists and a platelet-activating factor (PAF)-acether receptor antagonist. The three LTD4 antagonists, L-649,923, FPL 57231, and LY163443, inhibited AA-induced contractions of indomethacin-pretreated tracheal spirals selectively. The PAF-acether antagonist, L-652,731, did not inhibit AA-induced contractions of either trachea or parenchyma. This confirmed that AA-induced contractions of trachea involved release and activity of LTD4. The LTD4 antagonists and L-652,731 partially inhibited OA-induced contractions of both trachea and parenchyma. When L-649,923 and L-652,731 or FPL 57231 and L-652,731 were combined, an additive inhibitory effect on OA-induced contractions was observed. When LY163443 and L-652,731 were combined, the inhibitory effect was synergistic. This may be due to the additional effect of LY163443 to inhibit phosphodiesterase. Total inhibition of OA-induced contractions was obtainable with relatively low concentrations when a LTD4 and PAF-acether antagonist were combined. These results suggested that LTD4 and PAF-acether may be the two major mediators in our model of allergic bronchospasm. The LTD4 and PAF-acether antagonists had the capacity to decrease baseline tone, even on tissues that were already relaxed with indomethacin, suggesting that LTD4 and PAF-acether may contribute to intrinsic tone in airway smooth muscle.  相似文献   

12.
Mechanisms underlying the Ca2+-activated K+ channel (K(Ca)) blockers-induced oscillatory contractions were investigated in guinea pig tracheal smooth muscle. The mean oscillatory frequencies induced by charybdotoxin (ChTX; 100 nM) and iberiotoxin (IbTX; 100 nM) were 9.8+/-0.8 (counts/h) and 8.0+/-1.3 (counts/h), respectively. Apamin (1 microM ), a blocker of SK(Ca), induced no contraction in guinea pig trachea and did not affect ChTX-induced oscillatory contractions. In Ca2+ free solution, no ChTX-induced contraction was observed. Nifedipine (100 nM), a blocker of voltage-dependent Ca2+ channels, and SK&F 96365 (10 microM), a blocker of capacitative Ca2+ entry, completely abolished ChTX-induced oscillatory contractions. Ryanodine (1 microM) decreased the amplitude, but increased the frequency of the oscillatory contractions. Thapsigargin (1 microM) changed contractions from the oscillatory type to the sustained type. Moreover, the protein kinase C (PKC) inhibitor, bisindolylamaleimide I (1 microM), decreased the amplitude and frequency, but PKC activator, phorbol 12-myristate 13-acetate (1 microM), increased the frequency of oscillatory contractions. These results suggest that K(Ca) inhibitors-induced oscillatory contractions are initiated by Ca2+ influx through L-type voltage-dependent Ca2+ channels. The ryanodine-sensitive calcium release channels in the sarcoplasmic reticulum may play an important role in maintaining the oscillatory contractions. Moreover, PKC activity modulates these oscillatory contractions.  相似文献   

13.
We have studied the effects of a lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on antagonism of leukotriene (LT) C4-induced contractions of isolated guinea-pig trachea and the results were compared to that of a cyclooxygenase inhibitor indomethacin. NDGA (30 microM) as well as indomethacin (5 microM) inhibited LTC4-induced contractions. But, in the presence of indomethacin NDGA was ineffective to inhibit the LTC4 response, whereas two other lipoxygenase inhibitors, phenidone (3-30 microM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 microM), markedly inhibited it. The antagonist action of an LTD4 receptor antagonist FPL55712 against LTC4-induced contractions was significantly reduced by NDGA (10-30 microM), but indomethacin had no effect on it. NDGA possessed the same inhibitory effect on the LTC4 antagonism in the presence of indomethacin, but 0.3 microM phenidone and 1 microM ETYA which did not inhibit the LTC4 response had no effect on it. NDGA also inhibited the relaxant response of isoproterenol on the contraction elicited by 30 nM LTC4, but did not affect those of forskolin and aminophylline. The relaxant response of isoproterenol on the LTC4 response was not inhibited by indomethacin, 0.3 microM phenidone and 1 microM ETYA. In the presence of a gamma-glutamyltranspeptidase inhibitor, L-serine borate (SB, 45 mM), NDGA had no effect on the LTC4 antagonism and the relaxant response of isoproterenol. In contrast, NDGA significantly inhibited the relaxant response of isoproterenol on 30 microM histamine- and 30 microM acetylcholine-induced contractions, but it did not affect the histamine antagonism by a histamine H1-blocker pyrilamine. These results suggest that some putative non-prostanoids are involved in LTC4-induced contractions of guinea-pig trachea and which regulate the effects of LTD4 antagonism and beta-adrenoceptor activation.  相似文献   

14.
Both substance-P and vasoactive intestinal peptide (VIP) have previously been demonstrated to contract and relax, respectively, the isolated guinea pig trachea. In addition, substance-P and VIP have been localized within the pulmonary innervation of various species. In the present studies, substance-P was found to cause a concentration-related contraction of isolated lung parenchymal strips of the guinea pig, as well as isolated tracheal strips. VIP caused a significant concentration-related relaxation of the isolated tracheal strip, but not the lung parenchymal strip. Indomethacin, a prostaglandin synthetase inhibitor, potentiated the contractile response of the trachea to substance-P and inhibited the VIP- and isoproterenol-induced relaxation. These studies are potentially important in understanding the pathogenesis of bronchospastic disorders, since alterations in prostaglandin biosynthesis may result in hyperreactivity of airways to contractile agonists such as neurotransmitters, as well as an inhibition of relaxation induced by endogenous substances such as VIP or β agonists.  相似文献   

15.
Endothelin-1-induced contractions of guinea pig tracheal and bronchial strips were dose-dependently attenuated by the amiloride analogues 5-(N-ethyl-N-isopropyl)amiloride (EIPA, 1-10 microM) and 5-(N,N-hexamethylene)amiloride (HMA, 1-10 microM). The calculated Ki values for EIPA and HMA were 0.11 +/- 0.02 microM and 0.06 +/- 0.02 microM in the trachea, and 0.28 +/- 0.11 microM and 0.70 +/- 0.25 microM in the bronchus, respectively. These values are in the same order of magnitude as those reported for inhibition of the Na+/H+ exchange in cells. Amiloride (1-10 microM) was ineffective. These data suggest that activation of the Na+/H+ exchange by ET-1 may be involved in mediating its myotropic action in guinea pig airway smooth muscle.  相似文献   

16.
The existence of substance P immunoreactive nerves in the trachea of guinea pig is known. In this study, capsaicin induced a long-lasting and marked contraction in the guinea pig trachea and nicotine-induced contraction was partially reduced in the capsaicin-treated muscle. Furthermore, the contractile response to nicotine (10(-5) M) in the presence of atropine (10(-7) M) was abolished by a substance P antagonist, [D-Arg1, D-Pro2, D-Trp7,9 Leu11]substance P (10(-5) M). These findings suggest that noncholinergic contractile response to nicotine may be due to the release of material(s) resembling substance P in the isolated tracheal smooth muscle preparation of guinea pig.  相似文献   

17.
We compared the effects of the leukotriene (LT) D4 receptor antagonist FPL55712 and some lipoxygenase inhibitors on contractions of isolated guinea-pig trachea induced by antigen (ovalbumin, OA) and calcium ionophore A23187 in the presence of the cyclooxygenase inhibitor indomethacin (5 μM), and by arachidonic acid (AA), melittin and LTD4. FPL55712 (0.1 and 1 μM) inhibited contractions induced by AA (100 μM) and the phospholipase A2 activator melittin (3 μg/ml), while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 10 μM) was a more effective inhibitor of the melittin response than the response. FPL55712 inhibited contractions induced by OA (100 μg/ml) more than by A23187 (1 μg/ml), and these inhibitory effects of FPL55712 were much less in the presence of l-serine-borate complex (45 mM), an inhibitor of LTC4 conversion to LTD4. NDGA (10 μM) had no significant effect on the OA response, whereas the lipoxygenase inhibitors 1-phenyl-3-pyrazolidone (phenidone, 10 μM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 μM) clearly inhibited it. In contrast, NDGA and phenidone inhibited the A23187 response, but ETYA had no effect on it. FPL55712, phenidone and ETYA, but not NDGA, had a large inhibitory effect on LTD4-induced contractions, but these inhibitors had no effect on histamine-induced contractions. These results suggest that in the guinea-pig trachea inhibitors of LTD4-induced contractions decrease antigen-induced contractions, whereas lipoxygenase inhibitors reduce the contraction to A23187.  相似文献   

18.
Release of leukotriene C4 from guinea pig trachea   总被引:1,自引:0,他引:1  
Immunological (ovalbumin) and non-immunological (calcium ionophore A23187) stimulation of guinea pig trachea induces a prolonged contraction that is enhanced by indomethacin (8.5 microM) and inhibited by nordihydroguaiaretic acid (50 microM) pretreatment of the tissue. The mediator released by the above stimuli was identified as leukotriene C4 by reverse-phase high performance liquid chromatography, and quantitated by bioassay. Indomethacin, and/or arachidonic acid (32.8 microM) did not enhance the release, whereas nordihydroguaiaretic acid reduced the contraction and release of LTC4. The results demonstrate the hitherto unproved capability of the large airways to synthesize leukotrienes and emphasize the importance of examining their role in asthma.  相似文献   

19.
Evidence for lipoxygenase pathway involvement in allergic tracheal contraction   总被引:10,自引:0,他引:10  
Challenge of actively sensitized guinea-pig trachea in vitro led to a contraction which was enhanced by the cyclo-oxygenase inhibitors, indomethacin and sodium meclofenamate. Cyclo-oxygenase inhibitors eliminated the release of PGE-like material induced by arachidonic acid (AA), histamine, and antigen challenge. AA (10 microgram./ml.) and PGE2 (100 ng./ml.) usually relaxed the trachea, whereas in the presence of cyclo-oxygenase inhibitors a contraction occurred. Phenidone and ETYA, which also blocked the lipoxygenase pathway of AA metabolism inhibited the enhancement of allergic tracheal contraction induced by cyclo-oxygenase inhibitors, decreased the time that the trachea remained contracted, and also eliminated the contraction induced by AA and PGE2. Thus, cyclo-oxygenase inhibitors may enhance allergic tracheal contraction by diverting AA metabolism into the lipoxygenase pathway and product of the latter pathway, possibly SRS-A, may be responsible for the enhancement and for the prolonged phase of allergic tracheal contraction. An analogous mechanism may account for aspirin-induced asthma in man.  相似文献   

20.
Ring preparations obtained from the guinea pig trachea contracted on short trains of electrical field stimulation. These contractions were mediated by activation of cholinergic nerves since they were abolished by atropine or tetrodotoxin. In the presence of beta blocking drugs noradrenaline and adrenaline dose-dependently inhibited contractions induced by field stimulation. By contrast, contractions on exogenous acetylcholine were left completely unaffected. It is concluded that the adrenergic agonists inhibited cholinergic neurotransmission by a prejunctional action. In order to characterize the noradrenaline receptor the effects of alpha1 and alpha2 blockers were evaluated using the Schild plot. For comparison experiments were also conducted on the guinea pig aorta and electrically stimulated guinea pig ileum. The results indicate that in guinea pig trachea and ileum noradrenaline inhibits cholinergic neurotransmission by acting on prejunctional alpha2 receptors whereas in guinea pig aorta it induces contraction by stimulating alpha1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号