首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
P T Velasco  L Lorand 《Biochemistry》1987,26(15):4629-4634
Following the isolation of the N epsilon-(gamma-glutamyl)lysine-containing polymers from human cataracts, our efforts were directed to induce such cross-links experimentally in rabbit lens, and evidence was obtained for the selective reactivities of certain beta-crystallin subunits in this transglutaminase-catalyzed event. In the present work, we examined the enzymatic cross-linking of purified crystallins individually (alpha, beta H, beta L, and gamma) and in combinations, with particular emphasis on forming the approximately 55K dimer. This species was the primary product in the cross-linking of beta H-crystallins; beta L also reacted with transglutaminase. Neither alpha- nor gamma-crystallins formed appreciable amounts of cross-linked structures with transglutaminase. Dansylcadaverine, known to compete against the reactive lysines of proteins in forming N epsilon-(gamma-glutamyl)lysine cross-bridges, was shown to inhibit the generation of dimeric and higher ordered oligomers from beta H and beta L. The fluorescent amine specifically labeled only two subunits in beta H (approximately 29-30K and approximately 26K) and one in beta L (approximately 26K), identifying these substrates as possessing transglutaminase-reactive endo-gamma-glutaminyl residues. An antiserum to bovine beta Bp recognized the approximately 23K subunit of rabbit beta-crystallins and also the approximately 55K dimer, suggesting that the approximately 23K protein participates as a lysine donor in generating the cross-linked dimer with transglutaminase. Inasmuch as the same antiserum reacts with an approximately 50K material reported to appear in increasing amounts with age in human lens, the results lend added support to the physiological significance of transglutaminase in the aging of lens.  相似文献   

2.
Limited proteolysis of rat brain tubulin (alpha beta) by subtilisin cleaves a 1-2-kDa fragment from the carboxyl-terminal ends of both the alpha and beta subunits with a corresponding loss in negative charge of the proteins. The beta subunit is split much more rapidly (and exclusively at 5 degrees C), yielding a protein with cleaved beta and intact alpha subunit, called alpha beta s, which is of intermediate charge. Further proteolysis cleaves the carboxyl terminus of the alpha subunit leading, irreversibly, to the doubly cleaved product, named tubulin S, with a composition alpha s beta s. Both cleavage products are polymerization-competent and their polymers are resistant to 1 mM Ca2+- and 0.24 M NaCl-induced depolymerization. The two polymers differ in that the alpha beta s polymer is stable to cold, GDP, and podophyllotoxin, whereas tubulin S polymer is disassembled by these agents; moreover, alpha beta s forms ring-shaped polymers, whereas alpha s beta s forms filaments associated into bundles and sheets. Tubulin S co-polymerizes with native tubulin yielding a mixed product of intermediate stability. The presence of low mole fractions of tubulin S leads to a marked reduction in the critical concentration for polymerization of the mixture.  相似文献   

3.
The appearance of the crystallins during lens development in the periodic albinism (ap/ap) mutant of Xenopus laevis has been studied. Using antibodies specific for total crystallins, alpha + beta crystallins, and gamma crystallins in the immunofluorescence technique, the first positive reaction for all could be demonstrated in the Nieuwkoop-Faber Stage 31 lens rudiment. The antibody to alpha + beta crystallins exhibited differences in intensity from cell to cell in the early rudiment, while the reaction to the other antibodies was uniform throughout the rudiment. As lens differentiation progressed, immunofluorescence was restricted in all cases to the lens fiber area, up to and including Nieuwkas positive, however, for total lens crystallins. These results are at variance with earlier studies on lens development and the crystallins in wildtype (+/+) X. laevis, where a positive reaction for gamma and total crystallins could be detector total lens crystallins. That this divergence in the mutant is due to a pleiotropic effect or directly to the inductive failure of the endomesoderm to initiate melanogenesis, is discussed.  相似文献   

4.
Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.  相似文献   

5.
Interactions between endothelial cells and extracellular matrix proteins are important determinants of endothelial cell signaling. Endothelial adhesion to fibronectin through alpha(v)beta(3) integrins or the engagement and aggregation of luminal alpha(v)beta(3) receptors by vitronectin triggers Ca2+ influx. However, the underlying signaling mechanisms are unknown. The electrophysiological basis of alpha(v)beta(3) integrin-mediated changes in endothelial cell Ca2+ signaling was studied using whole cell patch clamp and microfluorimetry. The resting membrane potential of bovine pulmonary artery endothelial cells averaged -60 +/- 3 mV. In the absence of intracellular Ca2+ buffering, the application of soluble vitronectin (200 microg/ml) resulted in activation of an outwardly rectifying K+ current at holding potentials from -50 to +50 mV. Neither a significant shift in reversal potential (in voltage clamp mode) nor a change in membrane potential (in current clamp mode) occurred in response to vitronectin. Vitronectin-activated current was significantly inhibited by pretreatment with the alpha(v)beta(3) integrin antibody LM609 by exchanging extracellular K+ with Cs+ or by the application of iberiotoxin, a selective inhibitor of large-conductance, Ca2+-activated K+ channels. With intracellular Ca2+ buffered by EGTA in the recording pipette, vitronectin-activated K+ current was abolished. Fura-2 microfluorimetry revealed that vitronectin induced a significant and sustained increase in intracellular Ca2+ concentration, although vitronectin-induced Ca2+ current could not be detected. This is the first report to show that an endothelial cell ion channel is regulated by integrin activation, and this K+ current likely plays a crucial role in maintaining membrane potential and a Ca2+ driving force during engagement and activation of endothelial cell alpha(v)beta(3) integrin.  相似文献   

6.
1. The ability of cell-free preparations from bovine lens to degrade fragments of alpha-crystallin has been studied. Crystallin fragments, produced by either chemical cleavage with cyanogen bromide or prolonged treatment with H2O2 and Cu2+ to produce hydroxyl radicals, were labelled with 125I and incubated with preparations obtained from lenses from animals of different age. 2. Results showed that the ability of the preparations obtained from the lens cores (the innermost part of the lens composed of enucleated non-dividing cells incapable of protein synthesis) to degrade crystallin fragments decreased with animal age. No such age-related correlation was obtained with preparations obtained from the cortex (the outer region of the lens surrounding the core). 3. The effect of incubation of the various lenticular preparations with H2O2 and Cu2+ on subsequent ability to catabolise crystallin fragments was also examined. Preparations from the oldest lenses were found to be the least resistant to free-radical attack. 4. The relative susceptibility of the crystallins and non-lenticular proteins to H2O2/Cu(2+)-mediated free-radical attack was examined. Not only were the various crystallins (alpha, beta and gamma) far more resistant to cleavage under these conditions, they also protected the non-lenticular proteins from free-radical-mediated attack. The comparative resistance of the crystallins to attack and their ability to protect other proteins appeared to be dependent on their structural integrity as prior denaturation with acid and/or cleavage with cyanogen bromide eliminated these properties. 5. It is suggested that crystallins (which show sequence homology to some heat-shock proteins) possess homeostatic functions which could protect other proteins (e.g. proteases) from certain forms of free-radical-mediated damage; crystallins may therefore be important in ageing in general where aberrant polypeptides accumulate.  相似文献   

7.
A hexapeptide, corresponding to the sequence around the glutamine in beta A3-crystallin that functions as amine-acceptor for transglutaminase, was synthesized. This peptide was biotinylated and used as a probe to identify amine-donor substrates for transglutaminase among lens proteins. It was found that Ca(2+)-activated transglutaminase linked this peptide not only to several beta-crystallins but, unexpectedly, also to alpha B-crystallin. The C-terminal lysine residue of alpha B-crystalline could be identified as the site of linkage. This strengthens the notion that, at least in crystallins, all transglutaminase substrate residues are located in terminal extensions of the polypeptides. It was shown that in lens homogenate, alpha B-crystallin can be covalently crosslinked to beta-crystallins by transglutaminase. The transglutaminase-mediated crosslinking of alpha B-crystallin may have implications for its involvement in normal and pathological processes in lens and other tissues.  相似文献   

8.
Maintenance of the state of differentiation in serially cultured bovine epithelial lens cells has been investigated. The radioactive labelled soluble proteins were studied by gel filtration and gel electrophoresis. 1. In the lens epithelium on its capsule, preferential synthesis of alpha B2 vs alpha A2 crystallin subunits and synthesis of beta-crystallins (mainly beta Bp) were observed. 2. Epithelial lens cells cultured on plastic Petri dishes for up to 35 divisions still synthesized alpha B2 and beta Bp, but no longer alpha A2. Conversely, the same cells injected into nude mice synthesized alpha B and alpha A, but no beta-crystallin could be detected. 3. The ratio of non-crystallin proteins to crystallin polypeptides increased drastically with the number of cell divisions. Among these proteins, both Mr 45 000 and Mr 57 000 proteins are probably constituents of the water-soluble cytoskeletal proteins, respectively actin and vimentin. A Mr 17 000 polypeptide was observed and its relationship with a metabolic product of alpha-crystallin is proposed. 4. The polymerization process of crystallin polypeptides in these cells was studied and compared with crystallin aggregates found in the lens. Newly synthesized alpha crystallins were readily involved in high molecular aggregates. This process does not seem to require alpha A, since only alpha B was detected. Interestingly, non-crystallin-soluble proteins form the bulk of proteins found in high molecular weight (HMW) polymers. The time course of crystallin aggregate formation, in long-term culture cells, seems to be different for alpha- vs beta-polypeptides. These results allowed us to conclude that bovine epithelial lens cells in vitro, although they do not undergo terminal differentiation into fibers, are not dedifferentiated, since they still express specific features of the epithelium in situ.  相似文献   

9.
The soluble proteins from bovine lens homogenate were separated on Sepharose CL-6B (2 X 200 cm) in 0.05 M tris-NaHSO3 pH 8.2 buffer containing 20 mM EDTA. Five sharp and defined fractions (HM alpha, alpha, beta H, beta L, gamma) were obtained. Each crystallin fraction was further purified by rechromatography on the same column. Each protein fraction was pure as judged by ultracentrifugation and SDS-gel electrophoresis. The molecular weights of the five fractions were 3.04 x 10(6), 5.83 x 10(5), 1.58 x 10(5) , 4.59 x 10(4), 2.14 x 10(4) as determined from sedimentation coefficient and intrinsic viscosity data by Scheraga-Mandelkern equation, which was in close agreement with that obtained by gel filtration. The polypeptide composition of crystallins as determined by SDS-gel electrophoresis revealed one band for high molecular weight alpha (HM alpha) and alpha, three for beta H, two for beta L and one for gamma. The gross CD patterns of crystallins were about the same in the peptide region (200 nm similar to or approximately 250 nm) with a minimum centered at about 217 nm, indicative of a beta-sheet structure in all crystallins. The [theta] values at 217 nm ranged from --1700 to --3700 degrees cm2 per decimole. The CD spectra of these crystallins in the aromatic region (250 nm similar to or approximately 300 nm) were different, reflecting the different contributions of aromatic amino acids to the tertiary structure of crystallins.  相似文献   

10.
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.  相似文献   

11.
Abnormal levels of endogenous calcium ions are known to induce eye lens opacity, and a variety of causative factors has been proposed, including calcium-mediated aggregation and precipitation of the lens proteins crystallins. We have specifically looked in some detail at the interaction of Ca2+ with various crystallins and its consequences. Lenses incubated in solutions containing 10 mM Ca2+ or 5 mM Tb3+ opacified. Fluorescence titration of crystallins with TbCl3 revealed that this ion binds to delta- and beta-crystallins in solution. Equilibrium dialysis showed that four Ca2+ ions bind to one delta-crystallin tetramer with an affinity of 4.3 x 10(3) M-1. Analysis of the amino acid sequence of delta-crystallin reveals the presence of a calmodulin-type "helix-loop-helix" or "EF-hand" calcium ion binding conformational motif in the region comprising residues 300-350. This is a novel feature of the molecule not reported so far. No other crystallins appear to have this motif. beta-Crystallin also binds four Ca2+ ions/aggregate unit of mass 160 kDa, with an affinity of 2.6 x 10(3) M-1, presumably in the midregion of the molecule that is rich in anionic and polar residues. Circular dichroism spectroscopy shows that the binding of calcium ion leads to subtle conformational changes in the molecules, notably in the tertiary structure.  相似文献   

12.
The formation of covalently linked, high molecular weight protein aggregates has been thought to play an important role in opacification of the human lens. Antisera were used in Western blot analysis to demonstrate the involvement of all major classes of lens proteins (alpha, beta and gamma crystallin; the major intrinsic membrane polypeptide) in covalent aggregation. Of these classes, aggregation of gamma and beta crystallins via intermolecular disulfide bonding and aggregation of the major intrinsic membrane polypeptide via intermolecular, non-disulfide bonding were more pronounced in cataractous as compared with normal lenses.  相似文献   

13.
Premature visual impairment due to lens opacification is a debilitating characteristic of untreated diabetes. Lens opacification is primarily due to the insolubilization of crystallins, proteins essential for lens optical properties, and recent studies have suggested that a major cause of this insolubilization may be the unregulated proteolysis of crystallins by calpains. These are intracellular cysteine proteases whose activation requires the presence of calcium (Ca2+) and elevated levels of lens Ca2+ is a condition associated with both diabetic cataractogenesis and other forms of the disorder. A number of calpains have been identified in the lens, including calpain 2, calpain 10 and two isozymes of calpain 3: Lp82 and Lp85. The use of animal hereditary cataract models have suggested that calpain 2 and/or Lp82 may be the major calpains involved in murine cataractogenesis with contributions from calpain 10 and Lp85. However, calpain 2 appears to be the major calpain involved in murine diabetic cataractogenesis and the strongest candidate of the calpains for a role in human types of cataractogenesis. Here, we present an overview of recent evidence on which these observations are based with an emphasis on the ability of calpains to proteolyse lens crystallins and calpain structural features, which appear to be involved in the Ca2+-mediated activation of these enzymes.  相似文献   

14.
Previous studies from this laboratory have shown that there are striking similarities between the yellow chromophores, fluorophores and modified amino acids released by proteolytic digestion from calf lens proteins ascorbylated in vitro and their counterparts isolated from aged and cataractous lens proteins. The studies reported in this communication were conducted to further investigate whether ascorbic acid-mediated modification of lens proteins could lead to the formation of lens protein aggregates capable of scattering visible light, similar to the high molecular aggregates found in aged human lenses. Ascorbic acid, but not glucose, fructose, ribose or erythrulose, caused the aggregation of calf lens proteins to proteins ranging from 2.2 x 10(6) up to 3.0 x 10(8 )Da. This compared to proteins ranging from 1.8 x 10(6) up to 3.6 x 10(8 )Da for the water-soluble (WS) proteins isolated from aged human lenses. This aggregation was likely due to the glycation of lens crystallins because [U-(14)C] ascorbate was incorporated into the aggregate fraction and because NaCNBH(3), which reduces the initial Schiff base, prevented any protein aggregation. Reactions of ascorbate with purified crystallin fractions showed little or no aggregation of alpha-crystallin, significant aggregation of beta(H)-crystallin, but rapid precipitation of purified beta(L)- and gamma-crystallin. The aggregation of lens proteins can be prevented by the binding of damaged crystallins to alpha-crystallin due to its chaperone activity. Depending upon the ratios between the components of the incubation mixtures, alpha-crystallin prevented the precipitation of the purified beta(L)- and gamma-crystallin fractions during ascorbylation. The addition of at least 20% of alpha-crystallin by weight into glycation mixtures with beta(L)-, or gamma-crystallins completely inhibited protein precipitation, and increased the amount of the high molecular weight aggregates in solution. Static and dynamic light scattering measurements of the supernatants from the ascorbic acid-modified mixtures of alpha- and beta(L)-, or gamma-crystallins showed similar molar masses (up to 10(8 )Da) and hydrodynamic diameter (up to 80( )nm). These data support the hypothesis, that if the lens reducing environment is compromised, the ascorbylation of lens crystallins can significantly change the short range interactions between different classes of crystallins leading to protein aggregation, light scattering and eventually to senile cataract formation.  相似文献   

15.
Guanine nucleotide binding (G) proteins are heterotrimers that couple a wide range of receptors to ionic channels. The coupling may be indirect, via cytoplasmic agents, or direct, as has been shown for two K+ channels and two Ca2+ channels. One example of direct G protein gating is the atrial muscarinic K+ channel K+[ACh], an inwardly rectifying K+ channel with a slope conductance of 40 pS in symmetrical isotonic K+ solutions and a mean open lifetime of 1.4 ms at potentials between -40 and -100 mV. Another is the clonal GH3 muscarinic or somatostatin K+ channel, also inwardly rectifying but with a slope conductance of 55 pS. A G protein, Gk, purified from human red blood cells (hRBC) activates K+ [ACh] channels at subpicomolar concentrations; its alpha subunit is equipotent. Except for being irreversible, their effects on gating precisely mimic physiological gating produced by muscarinic agonists. The alpha k effects are general and are similar in atria from adult guinea pig, neonatal rat, and chick embryo. The hydrophilic beta gamma from transducin has no effect while hydrophobic beta gamma from brain, hRBCs, or retina has effects at nanomolar concentrations which in our hands cannot be dissociated from detergent effects. An anti-alpha k monoclonal antibody blocks muscarinic activation, supporting the concept that the physiological mediator is the alpha subunit not the beta gamma dimer. The techniques of molecular biology are now being used to specify G protein gating. A "bacterial" alpha i-3 expressed in Escherichia coli using a pT7 expression system mimics the gating produced by hRBC alpha k.  相似文献   

16.
Lens crystallins isolated from the tadpole and frog lenses were compared with regard to the developmental changes of crystallin compositions. The major changes during the process of metamorphosis were (1) the total contents of alpha- and gamma-crystallins decrease from more than 70% to less than 60% and (2) one of the major beta-crystallin polypeptides increases from less than 1% to about 6% and (3) an amphibian-specific rho-crystallin also increases from about 6% to more than 10% of total soluble proteins of the lens. We have characterized the metamorphosis-dependent beta-crystallin polypeptide by peptide mapping and sequence determination of the protease-digested fragments. This polypeptide showed very high sequence homology to that of the major beta Bp-crystallin chain reported for the mammalian lenses. The changes of the relative abundance of various crystallins and the gradually-elevated levels of the expression of this beta Bp-like crystallin in the developing lens during metamorphosis may also have some bearing on the maintenance of lens stability in the adult frog lenses.  相似文献   

17.
Inhibition of alpha-crystallin aggregation by gamma-crystallin   总被引:1,自引:0,他引:1  
The transparency of the mammalian lens is primarily maintained by short range order among the major proteins of the lens fiber cells, the crystallins. Although these proteins are highly conserved at the amino acid sequence level, it has proven difficult to establish that they possess other than structural functions. We find that when non-lens proteins are added to concentrated solutions of alpha-crystallin, aggregation is induced, presumably through excluded volume effects. In contrast, the monomeric gamma-crystallins and the low molecular weight form of beta-crystallin (beta L) cause a decrease in the size of alpha-crystallin. When the naturally aggregated form of alpha-crystallin is examined, gamma- and beta L-crystallin, as well as a reducing agent, also cause partial dissociation as detected by dynamic light scattering and size exclusion chromatography, while no effect is seen with non-crystallin proteins. Furthermore, the chemical cross-linking of alpha-crystallin is inhibited by gamma- and beta L-crystallin but not by other proteins. The ability of gamma-crystallin to inhibit the association of alpha-crystallin is primarily localized to the gamma-II form which contains a high degree of exposed thiols. Only small amounts of gamma- and beta L-crystallin, however, can be cross-linked to alpha-crystallin in mixtures of the three proteins even at very high protein concentrations. These results suggest that one possible role for the lower molecular weight crystallins may be to minimize through a reductive effect the intrinsic tendency of alpha-crystallin to aggregate, an association reaction implicated in the loss of lens transparency.  相似文献   

18.
Water--soluble proteins (alpha-, beta H-, beta L- and gamma-crystallins) from the bovine lens nucleus and cortex were fractionated and compared by gel filtration on Sephadex G-200. X-ray diffraction patterns from concentrated gels of these proteins were obtained. It allowed to compare qualitatively the structures of different crystallins and also to identify the maxima on X-ray diffraction patterns of the lens intact tissue.  相似文献   

19.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

20.
Bovine lens alpha A- and alpha B-crystallin polypeptides show extensive sequence homology with each other, but apparently none with beta Bp- and gamma 2-crystallin. Despite only 30% sequence homology, the latter two proteins are assumed to have a strong correspondence in tertiary structure, consisting of four structurally similar folding units of antiparallel beta-sheet. We have tested for internal structural repeats in all crystallins, and structural homology between crystallins, by comparing various physical properties of the amino acid residues, such as bulkiness and propensity to form beta-sheet and beta-turn structure. Two procedures used a combination of five physical parameters to calculate correlation coefficients. The 4-fold structural repeat in gamma 2-crystallin and the internal duplication in beta Bp-crystallin were readily detectable, as was also the strong structural homology between corresponding folding units in beta Bp- and gamma 2-crystallin. However, for alpha-crystallin polypeptides, no conclusive support was obtained for either a four-unit or a six-unit folding, the two models previously considered by us. The third procedure compared smoothened hydropathy plots, representing hydrophilic and hydrophobic regions along the polypeptide sequences. Hydropathy profiles were found to show strong correspondence, particularly between alpha B-crystallin and beta Bp-crystallin. These observations support a similar 4-fold folding pattern for all bovine crystallins. A possible role in subunit interactions of the N-terminal folding unit, which has hydrophobic surface characteristics in both alpha- and beta-crystallin polypeptides, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号