首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Elimination of calcium ions from the medium of undifferentiated cell cultures of Digitalis thapsi increased cardenolide production and induced extracellular H2O2 accumulation, as measured by the quenching of pyranine fluorescence. The addition of catalase reduced the response and the inclusion of superoxide dismutase enhanced the loss of fluorescence. This suggested that, besides H2O2, the superoxide anion was also formed before dismutating to H2O2. Additionally, exogenous H2O2 or superoxide dismutase stimulated cardenolide production whereas the addition of catalase markedly reduced it. These results point to a connection between H2O2 and cardenolide formation. The absence of calcium did not alter the levels of lipid peroxidation products; however, changes in the antioxidant system of D. thapsi cells were observed. Catalase activity was extremely low in control cultures and remained unaltered upon calcium elimination. Ascorbate peroxidase activity was not modified in calcium-free cultures. By contrast, calcium deprivation stimulated superoxide dismutase activity and strongly inhibited glutathione reductase activity. Also, a significant decrease in reduced glutathione was observed. These responses were emulated by treatment of the cultures with the glutathione biosynthesis inhibitor buthionine sulfoximine and by ethyleneglycol-bis-β-aminoethyl ether and LaCl3. All these results indicate that the depletion of extracellular calcium induces changes in the redox state of cells and suggest that this alteration stimulates cardenolide formation in D. thapsi cultures.  相似文献   

2.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

3.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

4.
The chlorophyll a fluorescence yield of the cyanobacterium Synechococcus UTEX 625 decreased upon the initiation of inorganic carbon transport. The fluorescence yield recovered upon the depletion of inorganic carbon from the medium or upon the addition of DCMU. The inhibition of photosynthetic CO2 fixation by iodoacetamide did not prevent this reduction of fluorescence yield. Similar results were obtained for both Na+-stimulated HCO3 transport and for the transport (presumably of CO2) that is stimulated by carbonic anhydrase. A transient lowering of the fluorescence yield was also observed when cell suspensions were pulsed with CO2. In cells not inhibited with iodoacetamide, a very close quantitative relationship existed between the net rate of O2 evolution and the maximum extent of fluorescence quenching seen as a function of the inorganic carbon concentration. The fluorescence quenching, however, was not due to CO2 fixation but rather to the transport of inorganic carbon or the accumulation of the internal pool of inorganic carbon. If quenching is due to the latter it is not surprising that the extent of quenching corresponds to the maximum rate of photosynthesis as the rate of photosynthesis also depends on the size of the internal pool. The results with DCMU suggest that the quenching is Q quenching and transport must provide a mechanism for the oxidation of Q other than CO2 fixation.  相似文献   

5.
To elucidate how excess light energy is dissipated during water deficit, net photosynthesis (PN), stomatal conductance (gs), intercellular CO2 concentration (ci) and Chl a fluorescence were investigated in control and drought-stressed tomato plants ( Lycopersicon esculentum ). Gross O2 evolution (Eo) and gross O2 uptake (Uo) were determined by a mass spectrometric 16O/18O2 isotope technique. Under drought stress PN, gs, ci and Uo decline. While photochemical fluorescence quenching decreases under water deficit, non-photochemical quenching rises. The maximal efficiency of PSII measured in the dark is not affected by drought; however, in the light, Eo decreases under water deficit. The ratio PN/Eo falls under stress while the ratio Uo/Eo increases. We conclude that tomato plants follow a double strategy to avoid photodamage under drought stress conditions: (1) a substantial portion of light energy is emitted as heat and PSII activity is downregulated. This results in a decrease in Eo as well as PN and Uo. Despite reduced charge separation at PSII, the decline of CO2 assimilation because of lowered stomatal conductance and metabolic changes results in the need of degrading excessive photosynthetic electrons. (2) Oxygen is used as an alternative electron acceptor in photorespiration or Mehler reaction and Uo rises relative to Eo.  相似文献   

6.
G.H. Krause 《BBA》1973,292(3):715-728
Certain long-term fluorescence phenomena observed in intact leaves of higher plants and in isolated chloroplasts show a reverse relationship to light-induced absorbance changes at 535 nm (“chloroplast shrinkage”).

1. 1. In isolated chloroplasts with intact envelopes strong fluorescence quenching upon prolonged illumination with red light is accompanied by an absorbance increase. Both effects are reversed by uncoupling with cyclohexylammonium chloride.

2. 2. The fluorescence quenching is reversed in the dark with kinetics very similar to those of the dark decay of chloroplast shrinkage.

3. 3. In intact leaves under strong illumination with red light in CO2-free air a low level of variable fluorescence and a strong shrinkage response are observed. Carbon dioxide was found to increase fluorescence and to inhibit shrinkage.

4. 4. Under nitrogen, CO2 caused fluorescence quenching and shrinkage increase at low concentrations. At higher CO2 levels fluorescence was increased and shrinkage decreased.

5. 5. In the presence of CO2, the steady-state yield of fluorescence was lower under nitrogen than under air, whereas chloroplast shrinkage was stimulated in nitrogen and suppressed in air.

6. 6. These results demonstrate that the fluorescence yield does not only depend on the redox state of the quencher Q, but to a large degree also on the high-energy state of the thylakoid system associated with photophosphorylation.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea  相似文献   


7.
Abstract. The activity of the green alga Scenedesmus obliquus was studied in simplified nutrient solutions (20 mol m−3 NaNO3, 20 mol m−3 NH4C1, 20 mol m−3 NH4NO3, and 20 mol m−3 NaCl, respectively) at 25 °C. The experiments were performed under welldefined incident photon density fluxes ranging from 10 to 200 μmol m2 s−1, Light-dependent changes in pH and alkalinity (A) were followed by means of a potentiometric method using a glass electrode. In the experiments, carbon dioxide with known partial pressure was bubbled through the algal suspension, and during dark periods ul intervals of 1 h, the solution was allowed to equilibrate with the gas phase. This technique was applied to calculate equilibrium values of pH and alkalinity at regular intervals during a 12-h period. Results obtained in NaNO3, solution show a linear increase in A with time, at each level of illumination studied. After an initial drop, A also increases in NH4NO3, solution in a similar way to that in NaNO3 solution. The change in A with time was also found to increase linearly with the photon density flux studied and no saturation level could be defined. In experiments in NaCl solution, no changes in A were registered while measurements in NH4Cl solution showed a decrease in A with time.  相似文献   

8.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

9.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

10.
Abstract. A field study was conducted to determine the relationship of solar-excited chlorophyll a fluorescence to net CO2 assimilation rate in attached leaves. The Fraunhofer line-depth principle was used to measure fluorescence at 656.3 nm wavelength while leaves remained exposed to full sunlight and normal atmospheric pressures of CO2 and O2. Fluorescence induction kinetics were observed when leaves were exposed to sunlight after 10 min in darkness. Subsequently, fluorescence varied inversely with assimilation rate. In the C4 Zea mays , fluorescence decreased from 2.5 to 0.8 mW m-2 nm-1 as CO2 assimilation rate increased from 1 to 8 μmol m-2 s-1 (r2= 0.520). In the C3 Liquidambar styraciflua and Pinus taeda , fluorescence decreased from 6 to 2 mW m-2 nm-1 as assimilation rate increased from 2 to 5 or 0 to 2 μmol m-2 s-1 (r2= 0.44 and 0.45. respectively). The Fraunhofer line-depth principle enables the simultaneous measurement of solar-excited fluorescence and CO2 assimilation rate in individual leaves, but also at larger scales. Thus, it may contribute significantly to field studies of the relationship of fluorescence to photosynthesis.  相似文献   

11.
Abstract. Two experiments are described which test the normal correlations that arise between stomatal conductance, net CO2 assimilation rate, and intercellular CO2 concentration (Ci), using whole shoots of Commelina communis L. In the first, conductance increased with decreasing Ci, at four different quantum flux densities, such that there was no unique relationship between conductance and quantum flux density or Ci, In the second, conductance increased hyperbolically with increasing quantum flux density while Ci was held constant at 466, 302, and 46 μmiolmol−1, and the response differed at each Ci. In neither experiment was conductance consistently related to net CO2 assimilation rate in the mesophyll. In both experiments high Ci suppressed the response of conductance to light, while there was a large response of conductance to light at low Ci, indicating an interaction between the effects of light and CO2 on stomata. The results show that the parallel responses of assimilation and conductance to light result in constant intercellular CO2 concentrations, and not that stomata maintain a 'constant Ci'.  相似文献   

12.
Changes in photosystem II function during senescence of wheat leaves   总被引:6,自引:0,他引:6  
Analyses of chlorophyll fluorescence were undertaken to investigate the alterations in photosystem II (PSII) function during senescence of wheat ( Triticum aestivum L. cv. Shannong 229) leaves. Senescence resulted in a decrease in the apparent quantum yield of photosynthesis and the maximal CO2 assimilation capacity. Analyses of fluorescence quenching under steady‐state photosynthesis showed that senescence also resulted in a significant decrease in the efficiency of excitation energy capture by open PSII reaction centers (F'v/F'm) but only a slight decrease in the maximum efficiency of PSII photochemistry (F'v/F'm). At the same time, a significant increase in non‐photochemical quenching (qN) and a considerable decrease in photochemical quenching (qP) were observed in senescing leaves. Rapid fluorescence induction kinetics indicated a decrease in the rate of QA reduction and an increase in the proportion of QB‐non‐reducing PSII reaction during senescence. The decrease in both F'v/F'm and qP explained the decrease in the actual quantum yield of PSII electron transport ((φPSII). We suggest that the modifications in PSII function, which led to the down‐regulation of photosynthetic electron transport, would be in concert with the lower demand for ATP and NADPH in the Calvin cycle which is often inhibited in senescing leaves.  相似文献   

13.
The photosynthetic response was studied in two clones ( Populus deltoides × maximowiczii Eridano and Populus × euramericana I‐214), known for their differential response to ozone (O3) in terms of visible symptoms, when exposed to O3 (60 nl l−1 5 h day−1, 7 and 15 days). The photosynthetic ability was tested using gas exchange and chlorophyll fluorescence analysis. O3 caused a decrease in the CO2 assimilation rate at light saturation level in mature leaves of both clones. Alterations of Chl fluorescence parameters, in particular the Fv/Fm ratio and non‐photochemical quenching were also observed. The effects were similar for both clones and it could not be concluded that differential effects on electron transport capacity were responsible for the observed reduction in photosynthesis. The reduction of photosynthetic rate in Eridano was due mainly to a reduced mesophyll activity, as evidenced by the increase in intercellular CO2 concentration and the minimal changes in stomatal conductance. In contrast, in I‐214, stomatal effects were primarily responsible, although effects on the mesophyll cannot be excluded. Data obtained indicate that the effects observed at the mesophyll level may be attributed to indirect effects caused by membrane disorders.  相似文献   

14.
The influence of nitrate and ammonium assimilation on glycogen metabolism has been determined in intact Anacystis nidulans cell actively fixing CO2. Assimilation of nitrate or ammonium resulted in significant decreases in both the incorporation into glycogen of newly fixed carbon and the accumulation of glycogen by the cells, the magnitude of these effects depending on the light intensity. The depression in glycogen synthesis induced by nitrogen assimilation was more marked at low light intensity, and especially when ammonium was the nitrogen source. Under these conditions, specific radioactivity of the glycogen pool was particularly high, indicating enhanced turnover of glycogen. Thus, in addition to a more general depressing effect of nitrogen assimilation on the carbon flow to glycogen, degradation of glycogen appears to be stimulated by ammonium assimilation at low (but not at high) light intensity.  相似文献   

15.
The relationship between CO2 assimilation rate, growth and partitioning of carbon among starch, sucrose, glucose and fructose were studied in phosphorus (Pi)-limited Lemna gibba L. G3. Two experimental models were used: 1) Cultures were grown at various stable, suboptimal rates regulated by the supply of Pi; 2) cultures growing at optimal rates were transferred to Pi-free medium. The response to a Pi deficiency can be divided into two phases. Phase I is characterized by hyperactivity of the sucrose synthesis pathway, leading to high levels of glucose and fructose. Phase II is characterized by starch accumulation associated with a decrease in the cytoplasmic pools of soluble sugars owing to inhibition of carbon export from the chloroplast. A strong negative correlation was found between the CO2 assimilation rate and starch levels. No significant correlation was found between assimilation and ATP levels and decrease in relative growth rate did not significantly affect the adenylate energy charge (EC). The regulatory aspects of the partitioning of carbon among soluble sugars and starch as well as the negative correlation between carbohydrate levels and CO2 assimilation at Pi-limited growth are discussed.  相似文献   

16.
Bean plants ( Phaseolus vulgaris L. cv. Scarlett), germinated in darkness for I week, were transferred to light (200 μmol m−2 s−1) and cultivated for I week in a complete nutrient solution. After this period, cadmium ions in the form of CdSO4 were added at the concentrations of 0.10.20 and 50 μ M . The effects of this metal on the properties of photosystem II photochemistry were studied by means of modulated fluorescence analysis. Steady state photochemical quenching. non-photochemical quenching and terminal fluorescence were determined in control and cadmiumtreated plants. We postulate that, during short term exposure of plants to cadmium in the early stages of growth, the Calvin cycle reactions are more likely than photosystem II to be the primary target of the toxic influence of cadmium. The reduced demand for ATP and NADPH upon Calvin cycle inhibition causes a down-regulation of photosystem II photochemistry and of the yield of linear electron transport.  相似文献   

17.
Photoinhibition in Lemna gibba L. was studied by interpreting chlorophyll fluorescence characteristics at 77 K on the basis of the bipartite model of Butler and co-workers (Butler 1978). Application of this analysis to chloroplasts (isolated from plants before and after exposure to a photosynthetic photon flux density of 1 750 μmol m−2 s−1 at 3°C for 2 h) revealed that photoinhibition had the following effect on primary events in photosynthesis. Firstly, the fluorescence of PS II increased (44%) in the state of open traps (Fo) and decreased (32%) in the state of closed traps (Fm). It is suggested, that the Fo-decrease reflects increased quenching by radiationless decay, both effects occurring at PS II reaction centers. Secondly, the rate constant for transfer of excitation energy from PS II to PS I (kT(μ→J)) increased by 34%. However, in the state of closed traps, the flux of excitation energy via this transfer process decreased, most likely because of increased quenching by radiationless decay at PS II reaction centers. Thirdly, the probability for fluorescence from PS I decreased (19%). This indicates increased quenching by radiationless decay.  相似文献   

18.
Potato plants ( Solanum tuberosum L. var. Russet Burbank) treated with 1 μl ethylene 1−1 of air showed an inhibition of CO2 assimilation by 18%. The inhibition occurred after 3 h of exposure to ethylene and was not mediated through closure of the stomata. The enrichment of the root zone with CO2 almost completely abolished the ethylene inhibition of CO2 assimilation which was apparently due to an increase in the intercellular concentration of CO2 in leaves following enrichment. The effect of application of CO2 to the root zone on ethylene inhibition of CO2 assimilation seemed to last for a few days. Potato plants treated with aminoethoxyvinlglycine (AVG) showed an increase in fresh and dry weight as compared to non-treated plants. Our results indicate that both CO2 and AVG alter the effect of ethylene and promote growth in plants by inhibiting ethylene action and biosynthesis, respectively.  相似文献   

19.
Abstract In the filamentous cyanobacterium Calothrix PCC 7504, which fixes N2 aerobically, the modification state of the regulatory PII protein (GlnB) was shown to depend on nitrogen and carbon availability, as observed in the unicellular non-fixing strain Synechococcus PCC 7942. However, the conditions for modifications, the time dependence of the process and the electrophoretic behavior of the native PII isoforms differed somewhat between the two strains. In another strain, Calothrix PCC 7601, which has lost the capability to fix N2, PII was modified only if ammonia plus an inhibitor of glutamine synthetase were present. It is proposed that: (i) the behavior of the PII proteins depends upon the physiological properties of the strains; and (ii) the modification system of PII per se may differ between the two cyanobacterial genera.  相似文献   

20.
Photosynthesis, respiration and chlorophyll fluorescence parameters were determined in peach ( Prunus persica L. cv. Dixired) leaves naturally infected by Taphrina deformans (Berk.) Tul. and in healthy leaves (controls), in two successive springs. A drastic decrease in net photosynthesis and an evident increase in respiration in curled leaves were noted. The instantaneous PSII fluorescence yield, with no (F0) and with (F0) quenching component, and steady state fluorescence yield (under actinic light, Fs) were essentially unchanged. Maximal fluorescence in dark-adapted (Fm) and illuminated (F'm) leaves and the corresponding variable fluorescence (Fv and Fv) clearly decreased. The indicators of PSII quantum yield (Fv/Fm) in dark-adapted leaves, and the potential PSII excitation capture efficiency (F'v/F'm) and the quantum yield of PSII (qp [F'v/F'm]) in the light were also significantly lower in curled leaves. Decreasing tendencies were also noted for the PSII photochemical yield (photochemical quenching, qp) and in the energy status of the chloroplast (non-photochemical quenching, qN, and Stern-Vollmer value, NPQ) although the differences were not always significant. In curled leaves the main alteration documented is the imbalance between the drastic inhibition of CO2 fixation and the moderate decrease in photochemical reactions (i.e. Fv/Fm and ΔF/F'm), indicating changes in the energy flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号