首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.

Background

Adenosine is generated in response to cellular stress and damage and is elevated in the lungs of patients with chronic lung disease. Adenosine signaling through its cell surface receptors serves as an amplifier of chronic lung disorders, suggesting adenosine-based therapeutics may be beneficial in the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Previous studies in mouse models of chronic lung disease demonstrate that the key components of adenosine metabolism and signaling are altered. Changes include an up-regulation of CD73, the major enzyme of adenosine production and down-regulation of adenosine deaminase (ADA), the major enzyme for adenosine metabolism. In addition, adenosine receptors are elevated.

Methodology/Principal Findings

The focus of this study was to utilize tissues from patients with COPD or IPF to examine whether changes in purinergic metabolism and signaling occur in human disease. Results demonstrate that the levels of CD73 and A2BR are elevated in surgical lung biopsies from severe COPD and IPF patients. Immunolocalization assays revealed abundant expression of CD73 and the A2BR in alternatively activated macrophages in both COPD and IPF samples. In addition, mediators that are regulated by the A2BR, such as IL-6, IL-8 and osteopontin were elevated in these samples and activation of the A2BR on cells isolated from the airways of COPD and IPF patients was shown to directly induce the production of these mediators.

Conclusions/Significance

These findings suggest that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of patients with COPD and IPF, and provide proof of concept information that these disorders may benefit from adenosine-based therapeutics. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is a non-neoplastic pulmonary disease that is characterized by the formation of scar tissue within the lungs in the absence of any known provocation. IPF is a rare disease which affects approximately 5 million persons worldwide. The prevalence is estimated to be slightly greater in men (20.2/100,000) than in women (13.2/100,000). The mean age at presentation is 66 years. IPF initially manifests with symptoms of exercise-induced breathless and dry coughing. Auscultation of the lungs reveals early inspiratory crackles, predominantly located in the lower posterior lung zones upon physical exam. Clubbing is found in approximately 50% of IPF patients. Cor pulmonale develops in association with end-stage disease. In that case, classic signs of right heart failure may be present. Etiology remains incompletely understood. Some environmental factors may be associated with IPF (cigarette smoking, exposure to silica and livestock). IPF is recognized on high-resolution computed tomography by peripheral, subpleural lower lobe reticular opacities in association with subpleural honeycomb changes. IPF is associated with a pathological lesion known as usual interstitial pneumonia (UIP). The UIP pattern consists of normal lung alternating with patches of dense fibrosis, taking the form of collagen sheets. The diagnosis of IPF requires correlation of the clinical setting with radiographic images and a lung biopsy. In the absence of lung biopsy, the diagnosis of IPF can be made by defined clinical criteria that were published in guidelines endorsed by several professional societies. Differential diagnosis includes other idiopathic interstitial pneumonia, connective tissue diseases (systemic sclerosis, polymyositis, rheumatoid arthritis), forme fruste of autoimmune disorders, chronic hypersensitivity pneumonitis and other environmental (sometimes occupational) exposures. IPF is typically progressive and leads to significant disability. The median survival is 2 to 5 years from the time of diagnosis. Medical therapy is ineffective in the treatment of IPF. New molecular therapeutic targets have been identified and several clinical trials are investigating the efficacy of novel medication. Meanwhile, pulmonary transplantation remains a viable option for patients with IPF. It is expected that, during the next decade, considerable progress will be made toward the understanding and treatment of this devastating illness.  相似文献   

3.
Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of the fibroblast-to-myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-β1 when cells are seeded at a high density compared with a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-β1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.  相似文献   

4.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease associated with substantial morbidity and mortality. The objective of this study was to determine whether there is a peripheral blood protein signature in IPF and whether components of this signature may serve as biomarkers for disease presence and progression.

Methods and Findings

We analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and in the plasma of 53 control individuals. We identified a combinatorial signature of five proteins—MMP7, MMP1, MMP8, IGFBP1, and TNFRSF1A—that was sufficient to distinguish patients from controls with a sensitivity of 98.6% (95% confidence interval [CI] 92.7%–100%) and specificity of 98.1% (95% CI 89.9%–100%). Increases in MMP1 and MMP7 were also observed in lung tissue and bronchoalveolar lavage fluid obtained from IPF patients. MMP7 and MMP1 plasma concentrations were not increased in patients with chronic obstructive pulmonary disease or sarcoidosis and distinguished IPF compared to subacute/chronic hypersensitivity pneumonitis, a disease that may mimic IPF, with a sensitivity of 96.3% (95% CI 81.0%–100%) and specificity of 87.2% (95% CI 72.6%–95.7%). We verified our results in an independent validation cohort composed of patients with IPF, familial pulmonary fibrosis, subclinical interstitial lung disease (ILD), as well as with control individuals. MMP7 and MMP1 concentrations were significantly higher in IPF patients compared to controls in this cohort. Furthermore, MMP7 concentrations were elevated in patients with subclinical ILD and negatively correlated with percent predicted forced vital capacity (FVC%) and percent predicted carbon monoxide diffusing capacity (DLCO%).

Conclusions

Our experiments provide the first evidence for a peripheral blood protein signature in IPF to our knowledge. The two main components of this signature, MMP7 and MMP1, are overexpressed in the lung microenvironment and distinguish IPF from other chronic lung diseases. Additionally, increased MMP7 concentration may be indicative of asymptomatic ILD and reflect disease progression.  相似文献   

5.
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.  相似文献   

6.
A recent review article suggested that idiopathic pulmonary fibrosis (IPF) is a disease that is associated more with abnormal wound healing than with inflammation. Data derived from transgenic and gene transfer rodent models suggest that lung inflammation may be a necessary but insufficient component of IPF, and that at some point in the natural history of the disease IPF becomes no longer dependent on the inflammatory response for propagation. Altered microenvironment and involvement of epithelial cell/mesenchymal cell interaction are the most likely contributors to the pathogenesis of this chronic progressive disorder.  相似文献   

7.
H Liang  Y Gu  T Li  Y Zhang  L Huangfu  M Hu  D Zhao  Y Chen  S Liu  Y Dong  X Li  Y Lu  B Yang  H Shan 《Cell death & disease》2014,5(5):e1238
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and highly lethal fibrotic lung disease with poor treatment and unknown etiology. Emerging evidence suggests that epithelial–mesenchymal transition (EMT) has an important role in repair and scar formation following epithelial injury during pulmonary fibrosis. Although some miRNAs have been shown to be dysregulated in the pathophysiological processes of IPF, limited studies have payed attention on the participation of miRNAs in EMT in lung fibrosis. In our study, we identified and constructed a regulation network of differentially expressed IPF miRNAs and EMT genes. Additionally, we found the downregulation of miR-26a in mice with experimental pulmonary fibrosis. Further studies showed that miR-26a regulated HMGA2, which is a key factor in the process of EMT and had the maximum number of regulating miRNAs in the regulation network. More importantly, inhibition of miR-26a resulted in lung epithelial cells transforming into myofibroblasts in vitro and in vivo, whereas forced expression of miR-26a alleviated TGF-β1- and BLM-induced EMT in A549 cells and in mice, respectively. Taken together, our study deciphered the essential role of miR-26a in the pathogenesis of EMT in pulmonary fibrosis, and suggests that miR-26a may be a potential therapeutic target for IPF.  相似文献   

8.
New paradigms have been recently proposed in the pathogenesis of both chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), evidencing surprising similarities between these deadly diseases, despite their obvious clinical, radiological and pathologic differences. There is growing evidence supporting a "double hit" pathogenic model where in both COPD and IPF the cumulative action of an accelerated senescence of pulmonary parenchyma (determined by either telomere dysfunction and/or a variety of genetic predisposing factors), and the noxious activity of cigarette smoke-induced oxidative damage are able to severely compromise the regenerative potential of two pulmonary precursor cell compartments (alveolar epithelial precursors in IPF, mesenchymal precursor cells in COPD/emphysema). The consequent divergent derangement of signalling pathways involved in lung tissue renewal (mainly Wnt and Notch), can eventually lead to the distinct abnormal tissue remodelling and functional impairment that characterise the alveolar parenchyma in these diseases (irreversible fibrosis and bronchiolar honeycombing in IPF, emphysema and airway chronic inflammation in COPD).  相似文献   

9.
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic lung disease of unknown etiology. A viral pathogenesis in IPF has been suggested since >95% of IPF patients have evidence of chronic pulmonary infection with one or more herpesviruses. To determine whether pulmonary infection with herpesvirus can cause lung fibrosis, we infected mice with the murine gamma-herpesvirus 68 (MHV68). Because IPF patients have a T helper type 2 (Th2) pulmonary phenotype, we used IFN-gammaR-/-, a strain of mice biased to develop Th2 responses. Chronic MHV68 infection of IFN-gammaR-/- mice resulted in progressive deposition of interstitial collagen as shown by light and electron microscopy. A significant decrease in tidal volume paralleled the collagen deposition. Five features typically seen in IPF, increased transforming growth factor-beta expression, myofibroblast transformation, production of Th2 cytokines, hyperplasia of type II cells, and increased expression of matrix metalloproteinase-7, were also present in chronically infected IFN-gammaR-/- mice. There also was altered synthesis of surfactant proteins, which is seen in some patients with familial IPF. MHV68 viral protein was found in type II alveolar epithelial cells, especially in lung areas with extensive alveolar remodeling. In summary, chronic herpesvirus pulmonary infection in IFN-gammaR-/- mice causes progressive pulmonary fibrosis and many of the pathological features seen in IPF.  相似文献   

10.
ABSTRACT: BACKGROUND: Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases. METHODS: Elastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11). RESULTS: The sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p < 0.001) and 124% higher in IPF patients (p < 0.0001) compared with controls. ELN-441 had better diagnostic value in COPD patients (AUC 97%, p = 0.001) than in IPF patients (AUC 90%, p = 0.0001). The odds ratios for differentiating controls from COPD or IPF were 24 [2.06-280] for COPD and 50 [2.64-934] for IPF. CONCLUSIONS: MMP-9 and -12 time-dependently released the ELN-441 epitope from elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings.  相似文献   

11.
The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.  相似文献   

12.

Introduction

Comorbidities significantly influence the clinical course of idiopathic pulmonary fibrosis (IPF). However, their prognostic impact is not fully understood. We therefore aimed to determine the impact of comorbidities, as individual and as whole, on survival in IPF.

Methods

The database of a tertiary referral centre for interstitial lung diseases was reviewed for comorbidities, their treatments, their frequency and survival in IPF patients.

Results

272 patients were identified of which 12% had no, 58% 1–3 and 30% 4–7 comorbidities, mainly cardiovascular, pulmonary and oncologic comorbidities. Median survival according to the frequency of comorbidities differed significantly with 66 months for patients without comorbidities, 48 months when 1–3 comorbidities were reported and 35 months when 4–7 comorbidities were prevalent (p = 0.004). A multivariate Cox proportional hazard analyses identified other cardiac diseases and lung cancer as significant predictors of death, gastro-oesophageal reflux disease (GERD) and diastolic dysfunction had a significant positive impact on survival. A significant impact of comorbidities associated therapies on survival was not discovered. This included the use of proton pump inhibitors at baseline, which was not associated with a survival benefit (p = 0.718). We also established a predictive tool for highly prevalent comorbidities, termed IPF comorbidome which demonstrates a new relationship of IPF and comorbidities.

Conclusion

Comorbidities are frequent in IPF patients. Some comorbidities, especially lung cancer, mainly influence survival in IPF, while others such as GERD may inherit a more favourable effect. Moreover, their cumulative incidence impacts survival.  相似文献   

13.
ObjectiveTo assess the effects of oral mucolytics in adults with stable chronic bronchitis and chronic obstructive pulmonary disease.DesignSystematic review of randomised controlled trials that compared at least two months of regular oral mucolytic drugs with placebo.StudiesTwenty three randomised controlled trials in outpatients in Europe and United States.ResultsCompared with placebo, the number of exacerbations was significantly reduced in subjects taking oral mucolytics (weighted mean difference −0.07 per month, 95% confidence interval −0.08 to −0.05, P<0.0001). Based on the annualised rate of exacerbations in the control subjects of 2.7 a year, this is a 29% reduction. The number needed to treat for one subject to have no exacerbation in the study period would be 6. Days of illness also fell (weighted mean difference −0.56, −0.77 to −0.35, P<0.0001). The number of subjects who had no exacerbations in the study period was greater in the mucolytic group (odds ratio 2.22, 95% confidence interval 1.93 to 2.54, P<0.0001). There was no difference in lung function or in adverse events reported between treatments.ConclusionsIn chronic bronchitis and chronic obstructive pulmonary disease, treatment with mucolytics is associated with a reduction in acute exacerbations and days of illness. As these drugs have to be taken long term, they could be most useful in patients who have repeated, prolonged, or severe exacerbations of chronic obstructive pulmonary disease.

What is already know on this topic

Mucolytic drugs have properties that may be beneficial in chronic obstructive pulmonary diseaseThese drugs are not prescribed in the United Kingdom and Australasia, although they are widely used in many other countriesDrugs that reduce exacerbations may reduce the morbidity and healthcare costs associated with progressively severe disease

What this study adds

Regular use of mucolytic drugs for at least two months significantly reduces exacerbations and days of illness compared with placebo in patients with chronic bronchitis and chronic obstructive pulmonary diseaseExacerbations that do occur may not be as severe, and the benefit may be greater in those with more severe diseaseReductions are modest and treatment may not be cost effective  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs.  相似文献   

15.
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by collagen. We previously reported the functional expression of DDR1 on human monocyte-derived macrophages in vitro; however, information regarding its role in diseases is limited. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease, and the lesions contain an abundance of collagen. In this study, we examined DDR1 expression on bronchoalveolar lavage fluid (BALF) cells and investigated its functionality using samples obtained from 28 IPF patients, 13 chronic obstructive pulmonary disease patients, and 14 healthy volunteers. The DDR1 expression level in CD14-positive BALF cells was higher in IPF patients than in chronic obstructive pulmonary disease patients or healthy volunteers. The predominant isoform was DDR1b in the IPF group, while DDR1a was predominant in the other two groups. Using immunohistochemical analysis, we also detected DDR1 expression on infiltrating inflammatory cells in the IPF lesion. In IPF patients, DDR1 activation induced the production of MCP-1, IL-8, MIP-1 alpha, and matrix metalloproteinase-9 (MMP-9) from CD14-positive BALF cells in a p38 MAPK-dependent manner. In contrast, DDR1 activation of CD14-positive BALF cells in the other groups did not induce the production of these chemokines or MMP-9. These chemokines and MMP-9 contribute to the development of IPF and, therefore, we suggest that DDR1 might be associated with the pathogenesis of IPF in the tissue microenvironment.  相似文献   

16.
17.
Idiopathic pulmonary fibrosis is a chronic and usually progressive lung disorder of unknown etiology. A growing body of evidence suggests that, in contrast to other interstitial lung diseases, IPF is a distinct entity in which inflammation is a secondary and non-relevant pathogenic partner. Evidence includes the presence of similar mild/moderate inflammation either in early or late disease, and the lack of response to potent anti-inflammatory therapy. Additionally, it is clear from experimental models and some human diseases that it is possible to have fibrosis without inflammation. An evolving hypothesis proposes that IPF may result from epithelial micro-injuries and abnormal wound healing.  相似文献   

18.

Background

Idiopathic pulmonary fibrosis (IPF), a devastating lung disorder of unknown aetiology, and chronic hypersensitivity pneumonitis (HP), a disease provoked by an immunopathologic reaction to inhaled antigens, are two common interstitial lung diseases with uncertain pathogenic mechanisms. Previously, we have shown in other upper and lower airway diseases that immunoglobulin free light chains (FLCs) are increased and may be involved in initiating a local inflammation. In this study we explored if such a mechanism may also apply to HP and IPF.

Methods

In this study we examined the presence of FLC in serum and BAL fluid from 21 IPF and 22 HP patients and controls. IgG, IgE and tryptase concentrations were measured in BAL fluid only. The presence of FLCs, plasma cells, B cells and mast cells in lung tissue of 3 HP and 3 IPF patients and 1 control was analyzed using immunohistochemistry.

Results

FLC concentrations in serum and BAL fluid were increased in IPF and HP patients as compared to control subjects. IgG concentrations were only increased in HP patients, whereas IgE concentrations were comparable to controls in both patient groups. FLC-positive cells, B cells, plasma cells, and large numbers of activated mast cells were all detected in the lungs of HP and IPF patients, not in control lung.

Conclusion

These results show that FLC concentrations are increased in serum and BAL fluid of IPF and HP patients and that FLCs are present within affected lung tissue. This suggests that FLCs may be involved in mediating pathology in both diseases.  相似文献   

19.
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology, and life expectancy of 3-5 years after diagnosis. The incidence rate in the United States is estimated as high as 15 per 100,000 persons per year. The disease is characterized by repeated injury to the alveolar epithelium, resulting in inflammation and deregulated repair, leading to scarring of the lung tissue, resulting in progressive dyspnea and hypoxemia. The disease has no cure, although new drugs are in clinical trials and two agents have been approved for use by the FDA. In the present paper we develop a mathematical model based on the interactions among cells and proteins that are involved in the progression of the disease. The model simulations are shown to be in agreement with available lung tissue data of human patients. The model can be used to explore the efficacy of potential drugs.  相似文献   

20.
Deterioration of pulmonary surfactant function has been reported in interstitial lung disease; however, the molecular basis is presently unclear. We analyzed fatty acid (FA) profiles of several surfactant phospholipid classes isolated from large-surfactant aggregates of patients with idiopathic pulmonary fibrosis (IPF; n = 12), hypersensitivity pneumonitis (n = 5), and sarcoidosis (n = 12). Eight healthy individuals served as controls. The relative content of palmitic acid in phosphatidylcholine was significantly reduced in IPF (66.8 +/- 2.5%; means +/- SE; P < 0.01) but not in hypersensitivity pneumonitis (78.5 +/- 1.8%) and sarcoidosis (78.2 +/- 3.1%; control 80.1 +/- 0.7%). In addition, the phosphatidylglycerol FA profile was significantly altered in the IPF patients, with a lower relative content of its major FA, oleic acid, at the expense of saturated FA. In the phosphatidylcholine class, a significant correlation between the impairment of biophysical surfactant function and decreased percentages of palmitic acid was noted. We conclude that significant alterations in the FA profile of pulmonary surfactant phospholipids occur predominantly in IPF and may contribute to the disturbances of alveolar surface activity in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号