首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Influenza is a serious public health problem that causes a contagious respiratory disease. Vaccination is the most effective strategy to reduce transmission and prevent influenza. In recent years, cell-based vaccines have been developed with continuous cell lines such as Madin-Darby canine kidney (MDCK) and Vero. However, wild-type influenza and egg-based vaccine seed viruses will not grow efficiently in these cell lines. Therefore, improvement of virus growth is strongly required for development of vaccine seed viruses and cell-based influenza vaccine production. The aim of our research is to develop novel MDCK cells supporting highly efficient propagation of influenza virus in order to expand the capacity of vaccine production. In this study, we screened a human siRNA library that involves 78 target molecules relating to three major type I interferon (IFN) pathways to identify genes that when knocked down by siRNA lead to enhanced production of influenza virus A/Puerto Rico/8/1934 in A549 cells. The siRNAs targeting 23 candidate genes were selected to undergo a second screening pass in MDCK cells. We examined the effects of knockdown of target genes on the viral production using newly designed siRNAs based on sequence analyses. Knockdown of the expression of a canine gene corresponding to human IRF7 by siRNA increased the efficiency of viral production in MDCK cells through an unknown process that includes the mechanisms other than inhibition of IFN-α/β induction. Furthermore, the viral yield greatly increased in MDCK cells stably transduced with the lentiviral vector for expression of short hairpin RNA against IRF7 compared with that in control MDCK cells. Therefore, we propose that modified MDCK cells with lower expression level of IRF7 could be useful not only for increasing the capacity of vaccine production but also facilitating the process of seed virus isolation from clinical specimens for manufacturing of vaccines.  相似文献   

3.
Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.  相似文献   

4.
siRNA-mediated gene silencing: a global genome view   总被引:13,自引:1,他引:12       下载免费PDF全文
  相似文献   

5.
Influenza A virus exerts a large health burden during both yearly epidemics and global pandemics. However, designing effective vaccine and treatment options has proven difficult since the virus evolves rapidly. Therefore, it may be beneficial to identify host proteins associated with viral infection and replication to establish potential new antiviral targets. We have previously measured host protein responses in continuously cultured A549 cells infected with mouse-adapted virus strain A/PR/8/34(H1N1; PR8). We here identify and measure host proteins differentially regulated in more relevant primary human bronchial airway epithelial (HBAE) cells. A total of 3740 cytosolic HBAE proteins were identified by 2D LC-MS/MS, of which 52 were up-regulated ≥2-fold and 41 were down-regulated ≥2-fold after PR8 infection. Up-regulated HBAE proteins clustered primarily into interferon signaling, other host defense processes, and molecular transport, whereas down-regulated proteins were associated with cell death signaling pathways, cell adhesion and motility, and lipid metabolism. Comparison to influenza-infected A549 cells indicated some common influenza-induced host cell alterations, including defense response, molecular transport proteins, and cell adhesion. However, HBAE-specific alterations consisted of interferon and cell death signaling. These data point to important differences between influenza replication in continuous and primary cell lines and/or alveolar and bronchial epithelial cells.  相似文献   

6.
Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Qiuyang Zhang, Jun Wu, and AnhThu Nguyen made equal contributions to this work.  相似文献   

7.
Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system.  相似文献   

8.
Rab proteins and their effectors facilitate vesicular transport by tethering donor vesicles to their respective target membranes. By using gene trap insertional mutagenesis, we identified Rab9, which mediates late-endosome-to-trans-Golgi-network trafficking, among several candidate host genes whose disruption allowed the survival of Marburg virus-infected cells, suggesting that Rab9 is utilized in Marburg replication. Although Rab9 has not been implicated in human immunodeficiency virus (HIV) replication, previous reports suggested that the late endosome is an initiation site for HIV assembly and that TIP47-dependent trafficking out of the late endosome to the trans-Golgi network facilitates the sorting of HIV Env into virions budding at the plasma membrane. We examined the role of Rab9 in the life cycles of HIV and several unrelated viruses, using small interfering RNA (siRNA) to silence Rab9 expression before viral infection. Silencing Rab9 expression dramatically inhibited HIV replication, as did silencing the host genes encoding TIP47, p40, and PIKfyve, which also facilitate late-endosome-to-trans-Golgi vesicular transport. In addition, silencing studies revealed that HIV replication was dependent on the expression of Rab11A, which mediates trans-Golgi-to-plasma-membrane transport, and that increased HIV Gag was sequestered in a CD63+ endocytic compartment in a cell line stably expressing Rab9 siRNA. Replication of the enveloped Ebola, Marburg, and measles viruses was inhibited with Rab9 siRNA, although the non-enveloped reovirus was insensitive to Rab9 silencing. These results suggest that Rab9 is an important cellular target for inhibiting diverse viruses and help to define a late-endosome-to-plasma-membrane vesicular transport pathway important in viral assembly.  相似文献   

9.
The effect of influenza strains A (H3N2) and B, isolated during the seasons of 1994 and 1995 in the Czech Republic, on MDCK cells was studied. Various concentrations of virus and conditions of nutrition were used during the cell culture. The virus replication and consequently fragmentation of genomic DNA together with cytotoxicity were investigated in the absence and presence of 10 per cent calf serum. Virus replication, regardless of type A or B, caused earlier DNA fragmentation in comparison to non-infected cells in tissue culture. The results showed that the influenza B strain had a greater cytotoxic effect on MDCK cells than influenza A. A higher infection dose of influenza A virus accelerated the onset of apoptosis; conversely, a higher infection dose of influenza B virus delayed the onset of apoptosis. The absence of serum enhanced the progress of influenza-induced apoptosis in conditions in vitro. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants worldwide. Despite decades of research, there is still no registered vaccine available for this major pathogen. We investigated the protective efficacy of a recombinant influenza virus, PR8/NA-F85–93, that carries the RSV CD8+ T cell epitope F85–93 in its neuraminidase stalk. F85–93-specific cytotoxic T lymphocytes (CTLs) were induced in mice after a single intranasal immunization with PR8/NA-F85-93 virus, and these CTLs provided a significant reduction in the lung viral load upon a subsequent challenge with RSV. To avoid influenza-induced morbidity, we treated mice with matrix protein 2 (M2e)-specific monoclonal antibodies before PR8/NA-F85-93 virus infection. Treatment with anti-M2e antibodies reduced the infiltration of immune cells in the lungs upon PR8/NA-F85-93 infection, whereas the formation of inducible bronchus-associated lymphoid tissue was not affected. Moreover, this treatment prevented body weight loss yet still permitted the induction of RSV F-specific T cell responses and significantly reduced RSV replication upon challenge. These results demonstrate that it is possible to take advantage of the infection-permissive protection of M2e-specific antibodies against influenza A virus to induce heterologous CD8+ T cell-mediated immunity by an influenza A virus vector expressing the RSV F85-93 epitope.  相似文献   

11.
Influenza A virus causes annual epidemics and occasional pandemics in humans. Here, we investigated four members of the fibroblast growth factor receptor (FGFR) family; FGFR1 to 4, and examined their expression patterns in human lung epithelial cells A549 with influenza A virus infection. We identified a functional role of FGFR1 in influenza A/Puerto Rico/8/1934 (PR8) and A/Anhui/01/2005 (H5N1) virus replication. Our results showed that FGFR1 silencing by siRNA interference promoted influenza A/PR8 and H5N1 virus replication in A549 cells, while lentivirus-mediated exogenous FGFR1 expression significantly suppressed influenza A virus replication; however, FGFR4 did not have the same effects. Moreover, FGFR1 phosphorylation levels were downregulated in A549 cells by influenza A virus infection, while the repression of FGFR1 kinase using PD173074, a potent and selective FGFR1 inhibitor, could enhance virus replication. Furthermore, we found that FGFR1 inhibits influenza virus internalization, but not binding, during viral entry. These results suggested that FGFR1 specifically antagonizes influenza A virus replication, probably by blocking viral entry.  相似文献   

12.
The ubiquitin specific peptidase 22 (USP22) is a positive regulator of the growth of tumors. However, little is known about the impact of USP22 knockdown on the growth of human bladder cells. In the present study, we designed a series of asymmetric interfering RNAs (aiRNAs) and compared the efficacy of aiRNA and conventional symmetric interfering RNA (siRNA) in the silencing of USP22 expression and the growth of human bladder EJ cells in vitro and in vivo. In comparison with transfection with the USP22-specific siRNA, transfection with 15/21 aiRNA was more potent in down-regulating the USP22 expression and inhibiting EJ cell proliferation in vitro. Furthermore, transfection with 15/21 aiRNA induced higher frequency of EJ cells arrested at the G0/G1 phases, but did not trigger EJ cell apoptosis. Moreover, transfection with either the siRNA or 15/21 aiRNA up-regulated the expression of p53 and p21, but down-regulated the expression of cyclin E and Mdm2 in EJ cells. The up-regulated p53 expression induced by the specific siRNA or aiRNA was abrogated by induction of Mdm2 over-expression. In addition, treatment with the specific siRNA or aiRNA inhibited the growth of implanted human bladder tumors in mice and the aiRNA had more potent anti-tumor activity in vivo. Therefore, our data suggest that knockdown of USP22 expression by the aiRNA may down-regulate the expression of Mdm2 and cyclin E, resulting in the up-regulated expression of p53 and p21 and leading to cell cycling arrest and inhibition of human bladder EJ cell proliferation. Our findings indicate that the USP22-specific aiRNA may be a novel approach for the intervention of human bladder tumors.  相似文献   

13.
14.
Although RNA interference as a tool for gene knockdown is a great promise for future applications, the specificity of small interfering RNA (siRNA)-mediated gene silencing needs to be thoroughly investigated. Most research regarding siRNA specificity has involved analysis of affected off-target genes instead of exploring the specificity of the siRNA itself. In this study we have developed an efficient method for generating a siRNA target library by combining a siRNA target validation vector with a nucleotide oligomix. We have used this library to perform an analysis of the silencing effects of a functional siRNA towards its target site with double-nucleotide mismatches. The results indicated that not only the positions of the mismatched base pair have an impact on silencing efficiency but also the identity of the mismatched nucleotide. Our data strengthen earlier observations of widespread siRNA off-target effects and shows that ~35% of the double-mutated target sites still causes knockdown efficiency of >50%. We also provide evidence that there may be substantial differences in knockdown efficiency depending on whether the mutations are positioned within the siRNA itself or in the corresponding target site.  相似文献   

15.
Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc) siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp), single-cycle infectious particles (HCVsc), subgenomic replicons, and HCV cell culture systems (HCVcc), we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE), a proviral factor, and N-Myc down regulated Gene 1 (NDRG1), an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study of HCV host dependencies yields novel insights into viral infection, pathogenesis and potential therapeutic targets.  相似文献   

16.
Human immunodeficiency virus (HIV)-1 depends on the host cell machinery to support its replication. To discover cellular factors associated with HIV-1 replication, we conducted a genome-scale siRNA screen, revealing more than 311 host factors, including 267 that were not previously linked to HIV. Surprisingly, there was little overlap between these genes and the HIV dependency factors described recently. However, an analysis of the genes identified in both screens revealed overlaps in several of the associated pathways or protein complexes, including the SP1/mediator complex and the NF-kappaB signaling pathway. cDNAs for a subset of the identified genes were used to rescue HIV replication following knockdown of the cellular mRNA providing strong evidence that the following six genes are previously uncharacterized host factors for HIV: AKT1, PRKAA1, CD97, NEIL3, BMP2K, and SERPINB6. This study highlights both the power and shortcomings of large scale loss-of-function screens in discovering host-pathogen interactions.  相似文献   

17.
As an obligatory pathogen, influenza virus co-opts host cell machinery to harbor infection and to produce progeny viruses. In order to characterize the virus-host cell interactions, several genome-wide siRNA screens and proteomic analyses have been performed recently to identify host factors involved in influenza virus infection. CD81 has emerged as one of the top candidates in two siRNA screens and one proteomic study. The exact role played by CD81 in influenza infection, however, has not been elucidated thus far. In this work, we examined the effect of CD81 depletion on the major steps of the influenza infection. We found that CD81 primarily affected virus infection at two stages: viral uncoating during entry and virus budding. CD81 marked a specific endosomal population and about half of the fused influenza virus particles underwent fusion within the CD81-positive endosomes. Depletion of CD81 resulted in a substantial defect in viral fusion and infection. During virus assembly, CD81 was recruited to virus budding site on the plasma membrane, and in particular, to specific sub-viral locations. For spherical and slightly elongated influenza virus, CD81 was localized at both the growing tip and the budding neck of the progeny viruses. CD81 knockdown led to a budding defect and resulted in elongated budding virions with a higher propensity to remain attached to the plasma membrane. Progeny virus production was markedly reduced in CD81-knockdown cells even when the uncoating defect was compensated. In filamentous virus, CD81 was distributed at multiple sites along the viral filament. Taken together, these results demonstrate important roles of CD81 in both entry and budding stages of the influenza infection cycle.  相似文献   

18.
19.
West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.  相似文献   

20.
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号