首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
Waardenburg syndrome (WS) type 1 is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary abnormalities of the eye, hair, and skin, and dystopia canthorum. The phenotype is variable and affected individuals may exhibit only one or a combination of several of the associated features. To assess the relationship between phenotype and gene defect, clinical and genotype data on 48 families (271 WS individuals) collected by members of the Waardenburg Consortium were pooled. Forty-two unique mutations in the PAX3 gene, previously identified in these families, were grouped in five mutation categories: amino acid (AA) substitution in the paired domain, AA substitution in the homeodomain, deletion of the Ser-Thr-Pro-rich region, deletion of the homeodomain and the Ser-Thr-Pro-rich region, and deletion of the entire gene. These mutation classes are based on the structure of the PAX3 gene and were chosen to group mutations predicted to have similar defects in the gene product. Association between mutation class and the presence of hearing loss, eye pigment abnormality, skin hypopigmentation, or white forelock was evaluated using generalized estimating equations, which allowed for incorporation of a correlation structure that accounts for potential similarity among members of the same family. Odds for the presence of eye pigment abnormality, white forelock, and skin hypopigmentation were 2, 8, and 5 times greater, respectively, for individuals with deletions of the homeodomain and the Pro-Ser-Thr-rich region compared to individuals with an AA substitution in the homeodomain. Odds ratios that differ significantly from 1.0 for these traits may indicate that the gene products resulting from different classes of mutations act differently in the expression of WS. Although a suggestive association was detected for hearing loss with an odds ratio of 2.6 for AA substitution in the paired domain compared with AA substitution in the homeodomain, this odds ratio did not differ significantly from 1.0. Received: 27 July 1997 / Accepted: 9 December 1997  相似文献   

3.
4.
Waardenburg syndrome (WS) is a dominantly inherited and clinically variable syndrome of deafness, pigmentary changes, and distinctive facial features. Clinically, WS type I (WS1) is differentiated from WS type II (WS2) by the high frequency of dystopia canthorum in the family. In some families, WS is caused by mutations in the PAX3 gene on chromosome 2q. We have typed microsatellite markers within and flanking PAX3 in 41 WS1 kindreds and 26 WS2 kindreds in order to estimate the proportion of families with probable mutations in PAX3 and to study the relationship between phenotypic and genotypic heterogeneity. Evaluation of heterogeneity in location scores obtained by multilocus analysis indicated that WS is linked to PAX3 in 60% of all WS families and in 100% of WS1 families. None of the WS2 families were linked. In those families in which equivocal lod scores (between −2 and +1) were found, PAX3 mutations have been identified in 5 of the 15 WS1 families but in none of the 4 WS2 families. Although preliminary studies do not suggest any association between the phenotype and the molecular pathology in 20 families with known PAX3 mutations and in four patients with chromosomal abnormalities in the vicinity of PAX3, the presence of dystopia in multiple family members is a reliable indicator for identifying families likely to have a defect in PAX3.  相似文献   

5.
6.
Waardenburg syndrome type I (WS-I) is an autosomal dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, pigmentary disturbances, and other developmental defects. Klein-Waardenburg syndrome (WS-III) is a disorder with many of the same characteristics as WS-I and includes musculoskeletal abnormalities. We have recently reported the identification and characterization of one of the first gene defects, in the human PAX3 gene, which causes WS-I. PAX3 is a DNA-binding protein that contains a structural motif known as the paired domain and is believed to regulate the expression of other genes. In this report we describe two new mutations, in the human PAX3 gene, that are associated with WS. One mutation was found in a family with WS-I, while the other mutation was found in a family with WS-III. Both mutations were in the highly conserved paired domain of the human PAX3 gene and are similar to other mutations that cause WS. The results indicate that mutations in the PAX3 gene can cause both WS-I and WS-III.  相似文献   

7.
Waardenburg syndrome (WS) is an autosomal-dominant neurocristopathy characterized by sensorineural hearing loss, pigmentary abnormalities of the iris, hair, and skin, and is responsible for about 3% of congenital hearing loss. Point mutations in PAX3 have been identified in more than 90% of affected individuals with WS Type 1/WS Type 3. MITF point mutations have been identified in 10-15% of individuals affected with WS Type 2 (lacking dystopia canthorum). Multiplex ligation-dependent probe amplification (MLPA) is now a standard technology in the molecular genetics laboratory to detect copy number changes in targeted genes. We employed MLPA for PAX3 and MITF in a cohort of patients submitted with a diagnosis of WS1, 2 or 3 who were sequence negative for PAX3 and/or MITF. All coding exons of PAX3 and exons 1, 2, 3, and 10 of MITF were included in the MLPA assay. MLPA on 48 patients with WS 1 or 3 revealed 3 PAX3 whole gene deletions (2 WS1; 1 WS3), 2 PAX3 partial gene deletions [WS1, exon 1 and promoter (1st report); WS1, exons 5-9], and 1 partial MITF deletion ("WS1", exons 3-10) (6/48 approximately 12.5%). MLPA on 41 patients with WS2 and 20 patients submitted with a diagnosis of either WS1 or WS2 revealed no copy number changes. The detection of both partial and whole gene deletions of PAX3/MITF in this clinical cohort increases the mutation detection yield by at least 6% and supports integrating MLPA into clinical molecular testing primarily for patients with WS1 and 3.  相似文献   

8.
Homozygosity for Waardenburg syndrome.   总被引:3,自引:0,他引:3       下载免费PDF全文
In a large kindred including many individuals affected with Waardenburg (WS) type 1 (WS1) syndrome, a child affected with a very severe form of WS type 3 was born. This child presented with dystopia canthorum, partial albinism, and very severe upper-limb defects. His parents were first cousins, both affected with a mild form of WS1. Molecular analysis of PAX3, the gene that was determined by linkage to cause the disorder in the family, demonstrated a novel missense mutation (S84F) in exon 2 of PAX3 within the paired box. While individuals affected with WS1 were heterozygous for the mutation, the child with WS3 was homozygous for S84F. The observation that the PAX3 homozygote in humans may allow life at least in early infancy and does not cause neural tube defects was unexpected, since, in all the mutations known in mice (splotch), homozygosity has led to severe neural tube defects and intrauterine or neonatal death.  相似文献   

9.
Waardenburg syndrome (WS) is a rare disorder characterized by distinctive facial features, pigment disturbances, and sensorineural deafness. There are four WS subtypes. WS1 is mostly caused by PAX3 mutations, while MITF, SNAI2, and SOX10 mutations are associated with WS2. More than 100 different disease-causing mutations have been reported in many ethnic groups, but the data from Chinese patients with WS remains poor. Herein we report 18 patients from 15 Chinese WS families, in which five cases were diagnosed as WS1 and the remaining as WS2. Clinical evaluation revealed intense phenotypic variability in Chinese WS patients. Heterochromia iridis and sensorineural hearing loss were the most frequent features (100% and 88.9%, respectively) of the two subtypes. Many brown freckles on normal skin could be a special subtype of cutaneous pigment disturbances in Chinese WS patients. PAX3, MITF, SNAI2, and SOX10 genes mutations were screened for in all the patients. A total of nine mutations in 11 families were identified and seven of them were novel. The SOX10 mutations in WS2 were first discovered in the Chinese population, with an estimated frequency similar to that of MITF mutations, implying SOX10 is an important pathogenic gene in Chinese WS2 cases and should be considered for first-step analysis in WS2, as well as MITF.  相似文献   

10.
11.
We used segregation analysis to investigate the genetic basis of variation in dystopia canthorum, one of the key diagnostic features of Waardenburg syndrome type 1 (WS1). We sought to determine whether the W-index, a quantitative measure of this craniofacial feature, is influenced primarily either by allelic variation in the PAX3 disease gene or other major loci, by polygenic background effects, or by all of these potential sources of genetic variation. We studied both WS1-affected individuals and their WS1-unaffected relatives. After adjustment of the W-index for WS1 disease status, segregation analyses by the regression approach indicated major-locus control of this variation, although residual parent-offspring and sib-sib correlations are consistent with additional (possibly polygenic) effects. Separate analyses of WS1-affected and WS1-unaffected individuals suggest that epistatic interactions between disease alleles at the PAX3 WS1 locus and a second major locus influence variation in dystopia canthorum. Our approach should be applicable for assessing the genetic architecture of variation associated with other genetic diseases.  相似文献   

12.
13.
14.
15.
PAX3 gene structure, alternative splicing and evolution.   总被引:3,自引:0,他引:3  
  相似文献   

16.
The type IV Waardenburg syndrome (WS4), also referred to as Shah-Waardenburg syndrome or Waardenburg-Hirschsprung disease, is characterised by the association of Waardenburg features (WS, depigmentation and deafness) and the absence of enteric ganglia in the distal part of the intestine (Hirschsprung disease). Mutations in the EDN3, EDNRB, and SOX10 genes have been reported in this syndrome. Recently, a new SOX10 mutation was observed in a girl with a neural crest disorder without evidence of depigmentation, but with severe constipation due to a chronic intestinal pseudo-obstruction and persistence of enteric ganglia. To refine the nosology of WS, we studied patients with typical WS4 (including Hirschsprung disease) or with WS and intestinal pseudo-obstruction. We found three SOX10 mutations, one EDNRB and one EDN3 mutations in patients presenting with the classical form of WS4, and two SOX10 mutations in patients displaying chronic intestinal pseudo-obstruction and WS features. These results show that chronic intestinal pseudo-obstruction may be a manifestation associated with WS, and indicate that aganglionosis is not the only mechanism underlying the intestinal dysfunction of patients with SOX10 mutations.  相似文献   

17.
Defects in chromosome condensation, segregation or cytokinesis during mitosis disrupt genome integrity and cause organismal death or tumorigenesis. The conserved kinase AIR-2/Aurora B is required for normal execution of all these important mitotic events in Caenorhabditis elegans. TLK-1 has been recently shown to be a substrate and activator of AIR-2 in the presence of another AIR-2 activator ICP-1/INCENP, and to cooperate with AIR-2 to ensure proper mitotic chromosome segregation. However, whether TLK-1 may contribute to chromosome condensation or cytokinesis is unclear. A time-lapse microscopy analysis showed that tlk-1 mutants are defective in chromosome condensation and cytokinesis, in addition to chromosome segregation, during mitosis. Our data indicate that TLK-1 contributes to chromosome condensation and segregation, at least in part, in a manner that is distinct from the ICP-1-mediated mechanism and does not involve loading AIR-2 or condensin proteins to mitotic chromosomes. Moreover, TLK-1 functions in cytokinesis by localizing AIR-2 to the midzone microtubules. The localization pattern of TLK-1 is different from those of ICP-1 and AIR-2, revealing differences in dynamic regulation and association of TLK-1 and ICP-1 towards AIR-2 in vivo. Interestingly, human TLK2 could functionally substitute for tlk-1, suggesting that the mitotic roles of TLK members might be evolutionarily conserved.  相似文献   

18.
Waardenburg syndrome (WS) is an auditory-pigmentary syndrome caused by a deficiency of melanocytes and other neural crest-derived cells. Depending on a variety of symptoms associated with the auditory-pigmentary symptoms, WS is classified into four types: WS type 1 (WS1), WS2, WS3, and WS4. Six genes contributing to this syndrome--PAX3, SOX10, MITF, SLUG, EDN3 and EDNRB--have been cloned so far, all of them necessary for normal development of melanocytes. Mutant mice with coat color anomalies were helpful in identifying these genes, although the phenotypes of these mice did not necessarily perfectly match those of the four types of WS. Here we describe mice with mutations of murine homologs of WS genes and verify their suitability as models for WS with special interest in the cochlear disorder. The mice include splotch (Sp), microphthalmia (mi), Slugh-/-, WS4, JF1, lethal-spotting (ls), and Dominant megacolon (Dom). The influence of genetic background on the phenotypes of mice mutated in homologs of WS genes is also addressed. Finally, possible interactions among the six WS gene products are discussed.  相似文献   

19.
An Italian family in which Waardenburg syndrome type II (WS2) segregates together with a der(8) chromosome from a (4p;8p) balanced translocation was studied. Cytogenetic analysis by painting and subtelomeric probe hybridization positioned the chromosome 8 breakpoint at p22-pter. Fluorescence in situ hybridization analysis with yeast artificial chromosomes from a contig spanning the 8p21-pter region refined the breakpoint in an interval of less than 170 kb between markers WI-3823 and D8S1819. The only cloned gene for WS2 is that for microphtalmia (MITF) on chromosome 3p. In this family, MITF mutations were excluded by sequencing the whole coding region. The 8p23 region may represent a third locus for WS2 (WS2C).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号