首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Polydnaviruses are a group of insect DNA viruses and are characterized in their segmented genome that is located in the chromosome(s) of host wasps. A polydnavirus, Cotesia plutellae bracovirus (CpBV), encodes a viral ribonuclease (RNase) T2 in a specific segment #3 (CpBV‐S3). This study tested its effect on gene expression associated with host immune responses in the diamondback moth, Plutella xylostella. Micro‐injection of CpBV‐S3 into nonparasitized larvae induced expression of its two encoded genes, CpBV‐ORF301 (=CpBV‐RNase T2) and CpBV‐ORF302. In response to a bacterial challenge, four antimicrobial peptide genes (hemolin, gloverin, cecropin and lysozyme) and six phenoloxidase (PO)–associated genes (proPO‐activating proteinase, PO, serine proteinase homolog and serpins 1–3) were up‐regulated in their expressions. However, the transient expression of CpBV‐S3 suppressed the expressions of cecropin, PO and serpin 1. Double‐stranded RNA specific to the viral RNase T2 could specifically knockdown the viral gene expression and restored the three gene expressions suppressed in the larvae injected with CpBV‐S3. The inhibitory activity of the viral RNase T2 on the target genes was further proven by the suppression of PO activation in response to bacterial challenge in the larvae injected with CpBV‐S3. This immunosuppression by the expression of the viral RNase T2 resulted in significant increase of pathogen susceptibility of P. xylostella against Bacillus thuringiensis or baculovirus infection.  相似文献   

3.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.  相似文献   

4.
Abstract Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a solitary braconid endoparasitoid wasp, parasitizes the diamondback moth Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) by suppressing the host defense response, thereby resulting in successful parasitization. During parasitization, ovarian calyx fluid is also delivered into the haemocoel of the host along with the wasp egg. The effect of calyx fluid constituents on haemocyte‐spreading behaviour of P. xylostella is analysed by measuring F‐actin development in the haemocytes. For this purpose, the calyx fluid of C. plutellae is separated into ovarian protein and C. plutellae bracovirus (CpBV). The ovarian protein consists of a wide range of molecular weight proteins, which are apparently different from those of CpBV. When nonparasitized P. xylostella haemocytes are incubated with either ovarian protein or CpBV for 1 or 2 h, haemocytes lose their responsiveness to a cytokine, plasmatocyte‐spreading peptide, in a dose‐dependent manner for each calyx component and fail to exhibit haemocyte‐spreading behaviour. Some CpBV genes are expressed within 1 h of parasitization. The inhibition of haemocyte‐spreading could be explained by measuring F‐actin contents, in which parasitization by C. plutellae inhibits F‐actin development in the haemocytes of P. xylostella. Either ovarian protein or CpBV could inhibit F‐actin development in the nonparasitized haemocytes. In addition, co‐incubation of ovarian protein and CpBV results in significant additive inhibition of both haemocyte‐spreading and F‐actin development in the haemocytes in response to cytokine. These results suggest that both components of C. plutellae calyx fluid function in a synergistic manner, leading to immunosuppression during the early stage of parasitization.  相似文献   

5.
《Journal of Asia》2006,9(3):255-263
Two endoparasitoids, Cotesia plutellae and C. glomerata, parasitize the diamondback moth, Plutella xylostella, and induce significant host immunosuppression. This study analyzed the susceptibility changes of the parasitized P. xylostella against other pathogens using an entomopathogenic bacterium, Xenorhabdus nematophila (Xn), and a viral pathogen, Autographa californica nucleopolyhedrosis virus (AcNPV). The P. xylostella parasitized by either C. plutellae or C. glomerata exhibited higher susceptibilities to both microbial pathogens than the nonpara-sitized. To determine the parasitism factors inducing the enhanced susceptibility, three polydnaviral genes so far successfully cloned were selected from C. plutellae bracovirus (CpBV). CpBV-lectin and CpBV15 α/β were inserted into AcNPV under a CpBV promote and analyzed in their pathogenicities against P. xylostella larvae. Two AcNPVs recombined with CpBV15α/β were more potent than the control AcNPV recombined with an enhanced green fluorescent protein gene or the AcNPV recombined with CpBV-lectin. These results suggest that the wasp parasitization enhances other pathogen susceptibilities by inducing host immunosuppression, in which the symbiotic polydnavirus can play significant role in the enhanced susceptibility.  相似文献   

6.
The diamondback moth, Plutella xylostella, parasitized by its endoparasitoid wasp, Cotesia plutellae, undergoes various physiological alterations which include immunosuppression and an extended larval development. Its symbiotic virus, C. plutellae bracovirus (CpBV), is essential for their successful parasitization with more than 136 putative genes encoded in the viral genome. CpBV15β, a CpBV gene, has been known to play significant role in altering host physiological processes including hemocyte-spreading behavior through inhibition of protein synthesis under in vitro conditions. In the current study, we investigated its specific involvement in physiological processes of the host by transient expression and RNA interference techniques. The open reading frame of CpBV15β was cloned into a eukaryotic expression vector and this recombinant CpBV15β was transfected into nonparasitized 3rd instar P. xylostella by microinjection. CpBV15β was expressed as early as 24 h and was consistent up to 72 h. Due to the expression of this gene, plasma protein levels were significantly reduced and the ability of the hemocytes to adhere and spread on extracellular matrix was inhibited, wherein CpBV15β was detectable in the cytoplasm of hemocytes based on an indirect immunofluorescence assay. To confirm the role of CpBV15β, its double stranded RNA could efficiently recover the hemocyte-spreading behavior and synthesis of plasma proteins suppressed by the transient expression of CpBV15β. In addition, the larvae transfected with CpBV15β significantly suffered poor adult development probably due to lack of storage proteins. Thus these results demonstrate the role of CpBV15β in altering the host physiological processes involving cellular immune response and metamorphic development, which are usually induced by wasp parasitization.  相似文献   

7.
An endoparasitoid wasp, Cotesia plutellae, induces immunosuppression of the host diamondback moth, Plutella xylostella. To identify an immunosuppressive factor, the parasitized hemolymph of P. xylostella was separated into plasma and hemocyte fractions. When nonparasitized hemocytes were overlaid with parasitized plasma, they showed significant reduction in bacterial binding efficacy. Here, we considered a viral lectin previously known in other Cotesia species as a humoral immunosuppressive candidate in C. plutellae parasitization. Based on consensus regions of the viral lectins, the corresponding lectin gene was cloned from P. xylostella parasitized by C. plutellae. Its cDNA is 674 bp long and encodes 157 amino acid residues containing a signal peptide (15 residues) and one carbohydrate recognition domain. Open reading frame is divided by one intron (156 bp) in its genomic DNA. Amino acid sequence shares 80% homology with that of C. ruficrus bracovirus lectin and is classified into C-type lectin. Southern hybridization analysis indicated that the cloned lectin gene was located at C. plutellae bracovirus (CpBV) genome. Both real-time quantitative RT-PCR and immunoblotting assays indicated that CpBV-lectin showed early expression during the parasitization. A recombinant CpBV-lectin was expressed in a bacterial system and the purified protein significantly inhibited the association between bacteria and hemocytes of nonparasitized P. xylostella. In the parasitized P. xylostella, CpBV-lectin was detected on the surface of parasitoid eggs after 24 h parasitization by its specific immunostaining. The 24 h old eggs were not encapsulated in vitro by hemocytes of P. xylostella, compared to newly laid parasitoid eggs showing no CpBV-lectin detectable and easily encapsulated. These results support an existence of a polydnaviral lectin family among Cotesia-associated bracovirus and propose its immunosuppressive function.  相似文献   

8.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses segmented genome located on chromosome(s) of an endoparasitoid wasp, C. plutellae. An episomal viral segment (CpBV-S3) consists of 11,017 bp and encodes two putative open reading frames (ORFs). ORF301 shows amino acid sequence homologies (28-50%) with RNase T2s of various organisms. It also contains BEN domain in C-terminal region. ORF302 is a hypothetical gene, which is also found in other bracoviruses. Both genes were expressed in larvae of Plutella xylostella parasitized by C. plutellae. Their expressions were detected in all tested tissues including hemocyte, fat body, gut, and epidermis. To analyze effects of these genes on the parasitism, the segment of CpBV-S3 was injected to nonparasitized larvae of P. xylostella, in which the two genes were expressed at least for 4 days post-injection. The larvae injected with CpBV-S3 exhibited significant immunosuppression, such as reduction in total hemocyte population and impairment in nodule formation behavior of hemocytes in response to bacterial challenge. Each gene expression in the treated larvae was inhibited by co-injecting respective double strand RNA (dsRNA) specific to each ORF. Injection of dsRNA of ORF301 could rescue the immunosuppression of the viral segment-treated larvae, while dsRNA specific to ORF302 did not. These results suggest that a putative RNase fused with a BEN domain encoded in CpBV-S3 plays a parasitic role in inducing host immunosuppression in the parasitism.  相似文献   

9.
An endoparasitoid wasp, Cotesia plutellae, parasitizes larvae of the diamondback moth, Plutella xylostella, with its symbiotic polydnavirus, C. plutellae bracovirus (CpBV). This study analyzed the role of Inhibitor-kB (IkB)-like genes encoded in CpBV in suppressing host antiviral response. Identified eight CpBV-IkBs are scattered on different viral genome segments and showed high homologies with other bracoviral IkBs in their amino acid sequences. Compared to an insect ortholog (e.g., Cactus of Drosophila melanogaster), they possessed a shorter ankyrin repeat domain without any regulatory domains. The eight CpBV-IkBs are, however, different in their promoter components and expression patterns in the parasitized host. To test their inhibitory activity on host antiviral response, a midgut response of P. xylostella against baculovirus infection was used as a model reaction. When the larvae were orally fed the virus, they exhibited melanotic responses of midgut epithelium, which increased with baculovirus dose and incubation time. Parasitized larvae exhibited a significant reduction in the midgut melanotic response, compared to nonparasitized larvae. Micro-injection of each of the four CpBV genome segments containing CpBV-IkBs into the hemocoel of nonparasitized larvae showed the gene expressions of the encoded IkBs and suppressed the midgut melanotic response in response to the baculovirus treatment. When nonparasitized larvae were orally administered with a recombinant baculovirus containing CpBV-IkB, they showed a significant reduction in midgut melanotic response and an enhanced susceptibility to the baculovirus infectivity.  相似文献   

10.
Cystatins (CSTs) are reversible and competitive inhibitors of cysteine proteases. Some polydnaviruses encode viral CSTs that have been speculated to play a crucial role in viral pathology. Four CSTs have been reported in the episomal genome of a polydnavirus, Cotesia plutellae (synonymous with C. vestalis) bracovirus (CpBV). These 4 CSTs share high sequence homologies with other bracoviral CSTs. Further sequence analysis showed that 2 of the CpBV-CSTs are identical. The remaining 3 CSTs have been designated CpBV-CST1, CpBV-CST2, and CpBV-CST3. Expression analysis indicated that CpBV-CST2 was not expressed in any stage of Plutella xylostella, either parasitized or non-parasitized by C. plutellae. However, both CpBV-CST1 and CpBV-CST3 were expressed in all stages of P. xylostella. Interestingly, these 2 genes were also expressed in non-parasitized P. xylostella in all developmental stages. A CST sequence from the non-parasitized larva was 100% identical with that of CpBV-CST1 for the entire open reading frame (ORF). To understand the role of CpBV-CST1 in viral pathology, the ORF was cloned into a eukaryotic expression vector and transiently expressed in non-parasitized larvae. The in vivo transient expression lasted for at least 4 days. Under this condition, the treated larvae suffered significant suppression in immune responses and in development. These results suggest that CpBV-CSTs play a crucial role in parasitism, altering host immune and developmental processes by interrupting normal interactions between CSTs and cysteine proteases in P. xylostella.  相似文献   

11.
《Journal of Asia》2007,10(3):181-191
Polydnavirus is a group of animal DNA virus mutually associated with some ichneumonoid wasp. Its relatively large size of genome has been considered as a major source of the parasitoid function to manipulate developmental and immunological processes of target parasitized insects. Cotesia plutellae bracovirus (CpBV) is a polydnavirus derived from C. plutellae, which parasitizes the diamondback moth, Plutella xylostella. Parasitized P. xylostella exhibits altered physiological symptoms in development and immune reactions. Though several other parasitic factors such as ovarian proteins, venom, and teratocytes are identified, CpBV has been more focused on elucidating various host physiological alterations occurring due to the parasitism, which has driven the CpBV genome project. CpBV attains a typical bracovirus structure by its single unit membrane envelope, in which multiple nucleocapsids are enclosed. Its genome DNAs are segmented and located on the genome of C. plutellae. Its replication begins at adult tissue development during pupal stage. An apparent genome size is 471 kb estimated from 27 segments separated on 5% agarose gel. A current work on the genome has been completely sequenced 24 genomic segments and analyzed their genomic structure. The aggregated genome size is 351, 299 bp long and exhibits an average GC content of approximately 34.6%. Average coding density is about 32.3% and 125 putative open reading frames are predicted. Though more than half (52.5%) of predicted genes are annotated as hypothetical, the annotated CpBV genes share amino acid sequence homologies with those of other bracoviral genomes. The annotated genes are classified into the known bracoviral families, in which a family of protein tyrosine phosphatase is the largest including 36 ORFs, suggesting a significant role during parasitization. In addition, 8 and 7 ORFs encode Iκβ-like and EP1-like, respectively. Some predicted genes are known only in Cotesia-associated bracoviral genomes. Finally, two homologous genes, CpBV15α/β, are unique in CpBV genome, which are not matched to any other known polydnaviral genes. Their homology with malarian circumsporozoite toxin and eukaryotic translation inhibition factors suggests their function in host translation inhibitory factor. This review discusses CpBV genes on their putative physiological functions based on the molecular interactions between the host-parasite.  相似文献   

12.
An endoparasitoid wasp, Cotesia plutellae, induces significant immunosuppression of host insect, Plutella xylostella. This study was focused on suppression in humoral immune response of P. xylostella parasitized by C. plutellae. An EST database of P. xylostella provided a putative cecropin gene (PxCec) which is 627 bp long and encodes 66 amino acids. A signal peptide (22 amino acids) is predicted and two putative O-glycosylation sites in threonine are located at positions 58 and 64. Without bacterial infection, PxCec was expressed in pupa and adult stages but not in the egg and larval stages. Upon bacterial challenge, however, the larvae expressed PxCec as early as 3 h post infection (PI) and maintained high expression levels at 12–24 h PI. By 48 h PI, its expression noticeably diminished. All tested tissues of bacteria-infected P. xylostella showed PxCec expression. However, other microbes, such as virus and fungus, did not induce the PxCec expression. Parasitization by C. plutellae suppressed the expression of PxCec in response to bacterial challenge. Among the parasitic factors of C. plutellae, its symbiotic virus (C. plutellae bracovirus: CpBV) alone was able to inhibit the expression of PxCec of P. xylostella challenged by bacteria. These results indicate that PxCec expression is regulated by both immune and developmental processes in P. xylostella. The parasitization by C. plutellae inhibited the expression of PxCec by the wasp’s symbiotic virus.  相似文献   

13.
14.
A viral histone H4, CpBV-H4, is encoded in the Cotesia plutellae bracovirus (CpBV) genome. This polydnavirus is symbiotic with C. plutellae, an endoparasitoid wasp. When the wasp parasitizes its host, Plutella xylostella, the symbiotic CpBV is delivered to host hemocoel and infects different internal tissues. CpBV-H4 encoded in the virus exhibits high sequence similarity to host histone H4, except for an extended N-terminal tail (38 amino acids long). When the CpBV-H4 cloned in a eukaryotic expression vector was transiently expressed in P. xylostella and a nonhost, Spodoptera exigua, it clearly inhibited several immune-associated genes, including cecropin, gloverin, serpin, apolipophorin III, and transferrin. However, its truncated construct, prepared by deleting 38 amino acids at the N-terminal tail, lost its inhibitory activity against immune-associated genes of the both species. This study has verified an inhibitory activity of CpBV-H4 against host immune-associated genes and has provided a possibility to expand its activity spectrum to the genes of other insect species.  相似文献   

15.
Polydnaviruses (PDVs) are a group of insect DNA viruses, which exhibit a mutual symbiotic relationship with their specific host wasps. Moreover, most encapsidated genes identified so far in PDVs share homologies with insect‐originated genes, but not with virus‐originated genes. In the meantime, PDVs associated with 2 wasp genera Cotesia and Glytapanteles encode some genes presumably originated from other viruses. Cotesia plutellae bracovirus (CpBV) encodes 4 genes homologous to baculoviral p94: CpBV‐E94k1, CpBV‐E94k2, CpBV‐E94k3, and CpBV‐E94k4. This study was conducted to predict the origin of CpBV‐E94ks by comparing their sequences with those of baculoviral orthologs and to determine the physiological functions by their transient expressions in nonparasitized larvae and subsequent specific RNA interference. Our phylogenetic analysis indicated that CpBV‐E94ks were clustered with other E94ks originated from different PDVs and shared high similarity with betabaculoviral p94s. These 4 CpBV genes were expressed during most developmental stages of the larvae of Plutella xylostella parasitized by C. plutellae. Expression of these 4 E94ks was mainly detected in hemocytes and fat body. Subsequent functional analysis by in vivo transient expression showed that all 4 viral genes significantly inhibited both host immune and developmental processes. These results suggest that CpBV‐E94ks share an origin with betabaculoviral p94s and play parasitic roles in suppressing host immune and developmental processes.  相似文献   

16.
《Journal of Asia》2007,10(4):351-356
Polydnavirus is a DNA virus symbiotic to some endoparasitic wasps and plays a critical role in accomplishing successful parasitic life cycle of host wasps. Host translation inhibitory factor (HTIF) has been found in some polydnaviral genomes and performs parasitic functions leading to host immunosuppression and redirecting host nutrient usage to wasp development. The cabbage white butterfly, Pieris rapae, parasitized by a gregarious endoparasitoid, Cotesia glomerata, undergoes several physiological alterations including immune malfunctioning and failure of pupal metamorphosis. C. glomerata possesses its own symbiotic polydnavirus, C. glomerata bracovirus (CgBV). Its genome consisted of at least 12 segments in unequal amounts. Parasitized P. rapae hemolymph contained HTIF-like protein, which was determined through an immunoblotting assay using HTIF antibody of C. plutellae bracovirus (CpBV). RT-PCR using HTIF primers of CpBV produced an HTIF-like gene in P. rapae larvae parasitized by C. glomerata. Also, this HTIF-like gene was encoded in CgBV genome and its partial sequence of CgBV showed highly homology (98.5%) to amino acid sequence of an HTIF of CpBV, called CpBV15a. These results suggest that a common HTIF-like moiety may be shared among Cotesia-associated bracovirus.  相似文献   

17.
18.
19.
A viral histone H4 is encoded in a polydnavirus called Cotesia plutellae bracovirus (CpBV), which is symbiotic to an endoparasitoid wasp, C. plutellae. Compared to general histone H4s, the viral H4 possesses an extra N-terminal tail containing 38 amino acid residues, which has been presumed to control host gene expression in an epigenetic mode. To analyze the epigenetic control activity of CpBV-H4 on expression of immune-associated genes, it was transiently expressed in larvae of Tribolium castaneum that had been annotated in the immune genes from a full genome sequence. Subsequent alteration of gene expression pattern was compared with that of its mutant form deleting N-terminal tail (truncated CpBV-H4). In response to bacterial challenge, T. castaneum induces expression of 13 antimicrobial peptide (AMP) genes. When CpBV-H4 was expressed, the larvae failed to express 12 inducible AMP genes. By contrast, when truncated CpBV-H4 was transiently expressed, all AMP genes were expressed. Hemocyte nodule formation was significantly impaired by expression of CpBV-H4, in which expressions of tyrosine hydroxylase and dihydroxyphenylalanine decarboxylase were suppressed. However, expression of truncated CpBV-H4 did not give any significant adverse effect on the cellular immunity. The immunosuppression of CpBV-H4 was further supported by its activity of enhancing bacterial pathogenicity of an entomopathogenic bacterium, Xenorhabdus nematophila, against larvae transiently expressing CpBV-H4. These results suggest that CpBV-H4 suppresses both humoral and cellular immune responses of T. castaneum by altering a normal epigenetic control of immune-associated gene expression.  相似文献   

20.
三种内寄生蜂寄生对小菜蛾幼虫精子发生的影响   总被引:3,自引:0,他引:3  
内寄生蜂寄生可能会引起寄主的寄生性去势。对小菜蛾Plutella xylostella与菜蛾啮小蜂Oomyzus sokolowskii Kurdumov (膜翅目: 姬小蜂科)、半闭弯尾姬蜂Diadegma semiclausum Hellén (膜翅目: 姬蜂科)、菜蛾盘绒茧蜂Cotesia plutellae (Kurdj.) (膜翅目: 茧蜂科) 3个寄生体系,利用形态学方法和蛋白质技术,研究了寄生对小菜蛾幼虫精子发生的影响。结果表明:菜蛾啮小蜂寄生对寄主的精子发生过程没有影响。半闭弯尾姬蜂寄生造成寄主精母细胞的细胞核畸形,精细胞的染色质超浓缩并趋向核膜,但能形成少量的精子;半闭弯尾姬蜂寄生会导致寄主精巢总蛋白的含量显著下降。菜蛾盘绒茧蜂寄生对小菜蛾幼虫精子发生的抑制程度最强,被寄生寄主的精母细胞出现肿胀,核膜皱缩,胞质中的线粒体发生病变;精细胞的染色体也出现超浓缩并趋向核膜,大量的精子溶解,无正常的精子形成;其精巢总蛋白含量的下降程度比姬蜂寄生的更为明显,且导致分子量为63.4 kD的主蛋白缺失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号