首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The calcium dependency of the Ca2+-pump ATPase of rat cardiac sarcolemma was investigated in the presence and absence of EGTA and EDTA in combination with two free Mg2+-ion concentrations. The results showed: that Mg2+-ions are not essential for the turnover of the Ca2+-pump ATPase; that the Ca2+-affinity is regulated by the concentration of the calcium-chelator complex present in the medium; that (Ca2+-Mg2+)-ATPase and Ca2+-ATPase are probably expressions of the same Ca2+-pump ATPase in the plasma membrane of the cell.  相似文献   

2.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

3.
钙肥对富士苹果品质及Ca2+-ATPase活性影响的研究   总被引:8,自引:1,他引:7  
以盛果期的矮化富士为材料,研究了不同钙肥对富士苹果品质和Ca2+-ATPase活性的影响.结果表明,喷钙后单果重增加,Vc含量提高,可溶性固形物和花青苷含量增大,而成熟果实的叶绿素和可滴定酸含量下降.不同钙肥效果顺序为巨金钙>氨基酸钙>翠康钙宝>钙宝2000.钙肥对Ca2+-ATPase活性影响极为显著,其活性明显高于对照,不同钙肥间Ca2+-ATPase活性的变化趋势与果实品质的变化趋势相同.  相似文献   

4.
Alterations in protein diet have been reported to result in alterations in calcium homeostasis in the body. Ca2+Mg2+ATPase is an ubiquitous enzyme important in calcium homeostasis in the body. The effect of varying protein diet on the activities of Ca2+ pump across cell membranes is however yet to be fully elucidated. In this study, the activity of erythrocyte membrane calcium pump in response to varying protein concentration in diet was therefore studied in the dog. The study was carried out in 24 dogs, randomly divided into 4 groups. The groups were fed with diets containing 30%, 26%, 16% and 0% proteins (high, medium, low and zero) for six weeks respectively. Blood samples were collected from each animal to determine packed cell volumes, hematocrit, blood urea, electrolyte studies and erythrocyte ghost membrane studies. The effects of Ca2+ and ATP on the activity of Ca2+Mg2+ ATPase were determined in the isolated ghost membrane. The result of the study shows that there was a protein diet dependent increase in the activity of Ca2+Mg2+ ATPase in the presence and absence of ATP in all the groups with the highest activity recorded in the high protein diet group and the lowest activity observed in the zero protein group. There was also a protein diet dependent increase in the protein concentration of the membranes in all groups observed with the highest protein concentration recorded in the high protein diet group and the lowest activity observed in the zero protein group. There was a significant decrease in K+ concentration (P <0.05) and a significant increase in urea concentration of animals fed with high protein diet (P <0.05). There was also a significant increase (P <0.05) in HCO3- concentration in the animals fed with medium protein diet and no significant difference in the PCV and heamatocrit values in all groups. This study has shown that high protein diets increase the activity of the Ca2+Mg2+ ATPase in the presence and absence of ATP. Keywords; Protein diet, Membrane proteins, Ca2+Mg2+ ATPase activity, Calcium.  相似文献   

5.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

6.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

7.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

8.
R J Heaslip  S Chacko 《Biochemistry》1985,24(11):2731-2736
There are conflicting reports on the effect of Ca2+ on actin activation of myosin adenosine-triphosphatase (ATPase) once the light chain is fully phosphorylated by a calcium calmodulin dependent kinase. Using thiophosphorylated gizzard myosin, Sherry et al. [Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., & Hartshorne, D. J. (1978) Biochemistry 17, 4417-4418] observed that the actin activation of ATPase was not inhibited by the removal of Ca2+. Hence, it was suggested that the regulation of actomyosin ATPase activity of gizzard myosin by calcium occurs only via phosphorylation. In the present study, phosphorylated and thiophosphorylated myosins were prepared free of kinase and phosphatase activity; hence, the ATPase activity could be measured at various concentrations of Ca2+ and Mg2+ without affecting the level of phosphorylation. The ATPase activity of myosin was activated either by skeletal muscle or by gizzard actin at various concentrations of Mg2+ and either at pCa 5 or at pCa 8. The activation was sensitive to Ca2+ at low Mg2+ concentrations with both actins. Tropomyosin potentiated the actin-activated ATPase activity at all Mg2+ and Ca2+ concentrations. The calcium sensitivity of phosphorylated and thiophosphorylated myosin reconstituted with actin and tropomyosin was most pronounced at a free Mg2+ concentration of about 3 mM. The binding of 125I-tropomyosin to actin showed that the calcium sensitivity of ATPase observed at low Mg2+ concentration is not due to a calcium-mediated binding of tropomyosin to F-actin. The actin activation of both myosins was insensitive to Ca2+ when the Mg2+ concentration was increased above 5 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A Ca2+-ATPase (Ca2+- and Mg2+-requiring ATPase) was purified from a synaptic plasma-membrane fraction of rat brain. This enzyme had properties similar to those of plasma-membrane Ca2+-ATPases from other organs: its splitting of ATP was dependent on both Ca2+ and Mg2+, it bound in a Ca2+-dependent fashion to calmodulin-Sepharose and it cross-reacted with specific antibodies raised against human erythrocyte-membrane Ca2+-ATPase. It had an apparent Mr of 138 000, similar to those of plasma-membrane ATPases from human erythrocyte and from dog heart sarcolemma. Previous high-Ca2+-affinity ATPases observed in brain had Mr 100 000; in at least one case, such an ATPase probably represented a different type of enzyme, derived from coated vesicles.  相似文献   

10.
The sarcolemmal membrane obtained from rat heart by hypotonic shock-LiBr treatment method was found to incorporate 32P from [γ-32P] ATP in the absence and presence of cyclic AMP and protein kinase. The phosphorylated membrane showed an increase in Ca2+ ATPase and Mg2+ ATPase activities without any changes in Na+K+ ATPase activity. The observed increase in Ca2+Mg2+ ATPase activity was found to be associated with an increase in Vmax value of the reaction whereas Ka value for Ca2+Mg2+ was not altered. These results provide information concerning biochemical mechanism for increased calcium entry due to hormones which are known to elevate cyclic AMP levels in myocardium and produce a positive inotropic effect.  相似文献   

11.
The presence of a high and nonlinear Ca2+-independent (or basal) ATPase activity in rat heart preparations makes difficult the reliable measurement of sarcoplasmic reticulum (SR) Ca2+-ATPase activity by usual methods. A spectrophotometric assay for the accurate determination of SR Ca2+-ATPase activity in unfractionated homogenates from rat heart is described. The procedure is based on that reported by Simonides and van Hardeveld (1990, Anal. Biochem. 191, 321-331) for skeletal muscle homogenates. To avoid overestimation of the Ca2+-ATPase activity of cardiac homogenates that occurs when sequential measurements of total and basal ATPase activities are performed, two parallel and independent assays are required: one with low (micromolar) and other high (millimolar) calcium concentration. Addition of thapsigargin (0.2 microM) blocked totally the activity considered as Ca2+-ATPase activity. Using this method, the rat heart homogenate Ca2+-ATPase activity was 10.5 +/- 2.0 micromol. min-1 x g-1 tissue wet weight (n = 8). Likewise, a spectrophotometric assay for measuring E-type Mg2+-ATPase activity in cardiac total homogenates has been developed, comparing the following characteristics of the enzymatic activity in homogenate and a membrane-enriched fraction: first-order rate constant for ATP-dependent inactivation, Km for ATP, and effects of concanavalin A, Triton X-100, and specific inhibitors.  相似文献   

12.
The stoichiometry of the Ca2+-pumping ATPase of erythrocytes   总被引:1,自引:0,他引:1  
The stoichiometry of the erythrocyte Mg2+ dependent Ca2+-stimulated ATPase has been determined in a reconstituted system. Purified Ca2+ ATPase was incorporated into calcium impermeable liposomes and the ATP dependent calcium uptake was determined simultaneously with the hydrolysis of ATP. The results indicate that 1 gram atom of calcium is transported for each gram molecule of ATP hydrolysed, i.e., an ATP/Ca2+-stoichiometry of 1.  相似文献   

13.
Kreydiyyeh SI 《Life sciences》2000,67(11):1275-1283
The effect of epinephrine on the activity of the Na+-K+ ATPase was studied in isolated rat jejunal cells. The activity of the pump was assessed by measuring the ouabain inhibitable K+ accumulation by the enterocytes using 86Rb as a tracer. Epinephrine stimulated significantly the Na+-K+ ATPase in crypt cells but not in villus cells. This effect was still apparent in presence of propranolol and prazocin but disappeared in presence of yohimbine. Amiloride did not affect the epinephrine-induced stimulation. Calcium channel blockers and dibutyryl cAMP enhanced the activity of the pump, and exerted respectively overlapping and additive effects with epinephrine, when added simultaneously. The calcium ionophore A23187 inhibited the basal activity of the ATPase and the stimulatory effect of epinephrine disappeared in its presence. These results suggest that epinephrine stimulates the Na+-K+ ATPase in jejunal crypt cells by activating alpha2 receptors and decreasing intracellular calcium, and not by altering cAMP levels.  相似文献   

14.
Denervation of rat skeletal muscle produces after 14 days a decrease in Ca2+ uptake of a heterogeneous population of sarcoplasmic-reticulum vesicles, when measured in the presence of oxalate. The Mg2+-dependent ATPase (Ca2+-independent) activity increased after the same period and the Ca2+ + Mg2+-dependent ATPase activity decreased. Concomitant with these changes, there was an increase in vesicle size and calcium content. The observations are discussed in terms of changes in altered membrane structure, manifested in the shift of the equilibrium of the ATPase from an enzyme involved in calcium transport to a phosphoenzyme giving rise to an increase in the Mg2+-dependent ATPase activity.  相似文献   

15.
NMDA produced whole-cell membrane currents in cultured human astrocytes. The currents were not inhibited by the selective NMDA receptor antagonist, APV, while they were partially inhibited by the broad G-protein inhibitor, GDPbetaS. NMDA-induced currents were enhanced by either the microsomal Ca2+/ATPase inhibitors, thapsigargin and cyclopiazonic acid, or the ATP-uncoupler, dinitrophenol (DNP). In the Ca2+ assay, NMDA increased intracellular calcium concentration. The increase was inhibited by 26% in Ca2+-free extracellular solution, and it was not inhibited by APV. The results of the present study suggest that NMDA responses in human astrocytes are regulated by store Ca2+ depletion-associated signal.  相似文献   

16.
Several reports have documented that thapsigargin is a potent inhibitor of the SR Ca2+ ATPase isolated from cardiac or skeletal muscle. We have characterized the specificity of this agent in intact rat cardiac myocytes using cells maintained in the whole cell voltage clamp configuration. We have shown that thapsigargin decreases the magnitude of the Ca2+ transient and the twitch by about 80% while it slows the decay rate for these responses. These changes were not accompanied by any alterations in sarcolemmal currents or in the trigger Ca2+ generated by the inward calcium current. Taken together these results reveal that the action of thapsigargin is restricted to the SR Ca2+ ATPase in intact cardiac myocytes. Furthermore, it is demonstrated unambiguously that SR intracellular Ca2+ stores are an absolute requirement for the development of contractile tension in rat heart myocytes. It is shown that thapsigargin is a valuable probe to examine the importance of SR pools of Ca2+ and the role of the Ca2+ ATPase in intact myocytes as well as in genetically altered heart cells.  相似文献   

17.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

18.
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+ -ATPase and calmodulin-insensitive (Na+ +K+)- and Mg2+ -ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+ -ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+ -ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ +K+)-ATPase and Mg2+ -ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances.  相似文献   

19.
Two tests were performed to assess the relationship between the Ca2+-activated K+ channel and the Ca2+-pumping ATPase in human erythrocytes. Antibodies against the purified ATPase inhibited the ATPase in resealed erythrocytes, but had no effect on the K+ channel (as assessed by Rb+ efflux). Reconstituted liposomes containing the purified active Ca2+-pumping ATPase showed no Ca2+-activated Rb+ influx. Both of these results suggest that some molecule other than the Ca2+-ATPase is responsible for the K+ channel.  相似文献   

20.
Treatment with calcitriol of isolated cartilage cells derived from epiphyseal growth plates of rachitic chicks results in reduced intracellular calcium concentrations. The reduction in calcium was found to correlate with increased activity of Ca2+-ATPase. The activities of Na+-K+-ATPase and of Mg2+-ATPase did not change in response to the treatment with calcitriol. It is suggested that calcitriol regulates intracellular calcium by modulating the activity of the Ca2+-pumping ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号