首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Herpes simplex virus type 1 (HSV-1) genome isomerization occurs as a result of DNA replication-mediated homologous recombination between several sets of inverted repeat sequences present in the viral DNA. The frequency with which this recombination occurs has been demonstrated to be dependent upon DNA homology length rather than specific sequences. However, the smallest of the viral inverted repeats, the alpha sequence, has been shown to function as a recombinational hot spot, leading to speculation that this sequence may represent a specific element through which genome isomerization is mediated. To investigate this apparent paradox, a quantitative transient recombination assay system was developed and used to examine the recombinogenic properties of a panel of alpha sequence mutants. This analysis revealed that the presence of both the pac1 and pac2 elements was both necessary and sufficient for the induction of high-frequency recombination events by the alpha sequence. However, it was the double-strand break promoted by pac1 and pac2 during cleavage and packaging at the alpha sequence, and not the DNA sequences of the elements themselves, which appeared to be critical for recombination. This was illustrated (i) by the inability of the same pac1 and pac2 sequences to mediate inversion events in cells infected with an HSV-1 mutant which was competent for DNA replication-dependent recombination but defective for the cleavage and packaging process and (ii) by the ability of double-strand breaks generated in non-HSV-1 DNA by an in vivo-expressed restriction endonuclease to significantly stimulate the initiation of recombination events in virus-infected cells. Thus, the alpha sequence appears to act as a hot spot for homologous recombination simply because it happens to coincide with the site of the double-strand break which is generated during the cleavage and packaging process, not because it contains discrete sequences which are required for this activity. However, it was found that this enhanced recombinogenicity disappeared when the element was flanked by regions of extensive sequence homology, particularly that of the large inverted repeats which flank the alpha sequence at its natural site in the HSV-1 genome. These findings are consistent with a model for HSV-1 genome isomerization in which recombination is initiated primarily by multiple random double-strand breaks which arise during DNA replication across the inverted repeats of the genome, rather than by a single specific break which occurs at the alpha sequence during the cleavage and packaging process.  相似文献   

2.
The herpes simplex virus type 1 (HSV-1) genome consists of two components, L (long) and S (short), that invert relative to each other during productive infection to generate four equimolar isomeric forms of viral DNA. Recent studies have indicated that this genome isomerization is the result of DNA replication-mediated homologous recombination between the large inverted repeat sequences that exist in the genome, rather than site-specific recombination through the terminal repeat a sequences present at the L-S junctions. However, there has never been an unequivocal demonstration of the dispensability of the latter element for this process using a recombinant virus whose genome lacks a sequences at its L-S junctions. This is because the genetic manipulations required to generate such a viral mutant are not possible using simple marker transfer, since the cleavage and encapsidation signals of the a sequence represent essential cis-acting elements which cannot be deleted outright from the viral DNA. To circumvent this problem, a simple two-step strategy was devised by which essential cis-acting sites like the a sequence can be readily deleted from their natural loci in large viral DNA genomes. This method involved initial duplication of the element at a neutral site in the viral DNA and subsequent deletion of the element from its native site. By using this approach, the a sequence at the L-S junction was rendered dispensable for virus replication through the insertion of a second copy into the thymidine kinase (TK) gene of the viral DNA; the original copies at the L-S junctions were then successfully deleted from this virus by conventional marker transfer. The final recombinant virus, HSV-1::L-S(delta)a, was found to be capable of undergoing normal levels of genome isomerization on the basis of the presence of equimolar concentrations of restriction fragments unique to each of the four isomeric forms of the viral DNA. Interestingly, only two of these genomic isomers could be packaged into virions. This restriction was the result of inversion of the L component during isomerization, which prevented two of the four isomers from having the cleavage and encapsidation signals of the a sequence in the TK gene in a packageable orientation. This phenomenon was exploited as a means of directly measuring the kinetics of HSV-1::L-S(delta)a genome isomerization. Following infection with virions containing just the two packaged genomic isomers, all four isomers were readily detected at a stage in infection coincident with the onset of DNA replication, indicating that the loss of the a sequence at the L-S junction had no adverse effect on the frequency of isomerization events in this virus. These results therefore validate the homologous recombination model of HSV-1 genome isomerization by directly demonstrating that the a sequence at the L-S junction is dispensable for this process. The strategy used to remove the a sequence from the HSV-1 genome in this work should be broadly applicable to studies of essential cis-acting elements in other large viral DNA molecules.  相似文献   

3.
Although herpes simplex virus (HSV) 1 and human cytomegalovirus (CMV) differ remarkably in their biological characteristics and do not share nucleotide sequence homology, they have in common a genome structure that undergoes sequence isomerization of the long (L) and short (S) components. We have demonstrated that the similarity in their genome structures extends to the existence of an alpha sequence in the CMV genome as previously defined for the HSV genome. As such, the alpha sequence is predicted to participate as a cis-replication signal in four viral functions: (i) inversion, (ii) circularization, (iii) amplification, and (iv) cleavage and packaging of progeny viral DNA. We have constructed a chimeric HSV-CMV amplicon (herpesvirus cis replication functions carried on an Escherichia coli plasmid vector) substituting CMV DNA sequences for the HSV cleavage/packaging signal in a test of the ability of this CMV L-S junction sequence to provide the cis signal for cleavage/packaging in HSV 1-infected cells. We demonstrate that the alpha sequence of CMV DNA functions as a cleavage/packaging signal for HSV defective genomes. We show the structure of this sequence and provide a functional demonstration of cross complementation in replication signals which have been preserved over evolutionary time in these two widely divergent human herpesviruses.  相似文献   

4.
A novel packaging system for producing recombinant adeno-associated virus (rAAV) vector was described. Instead of the conventional method for rAAV production by two-plasmid co-transfection followed by superinfection with adenovirus 5, an HSV-1 amplicon system expressing AAV-2 rep and cap genes from their native promoters was used to provide complete helper functions for rAAV replicating and packaging. This HSV-1 ampticon stock consisted of two kinds of infectious HSV-1 virions, a replicating-defective HSV-1 amplicon pseudovirus harboring multi-copies of AAV-2 rep and cap gene and a temperature-sensitive HSV-1 mutant strain ts-KOS. High-titer rAAV was generated with this new packaging system. This packaging system gives a simple and scaleable process for rAAV production.  相似文献   

5.
Herpes simplex virus 1 (HSV-1) is a human pathogen that leads to recurrent facial-oral lesions. Its 152-kb genome is organized in two covalently linked segments, each composed of a unique sequence flanked by inverted repeats. Replication of the HSV-1 genome produces concatemeric molecules in which homologous recombination events occur between the inverted repeats. This mechanism leads to four genome isomers (termed P, IS, IL, and ILS) that differ in the relative orientations of their unique fragments. Molecular combing analysis was performed on DNA extracted from viral particles and BSR, Vero, COS-7, and Neuro-2a cells infected with either strain SC16 or KOS of HSV-1, as well as from tissues of experimentally infected mice. Using fluorescence hybridization, isomers were repeatedly detected and distinguished and were accompanied by a large proportion of noncanonical forms (40%). In both cell and viral-particle extracts, the distributions of the four isomers were statistically equivalent, except for strain KOS grown in Vero and Neuro-2a cells, in which P and IS isomers were significantly overrepresented. In infected cell extracts, concatemeric molecules as long as 10 genome equivalents were detected, among which, strikingly, the isomer distributions were equivalent, suggesting that any such imbalance may occur during encapsidation. In vivo, for strain KOS-infected trigeminal ganglia, an unbalanced distribution distinct from the one in vitro was observed, along with a considerable proportion of noncanonical assortment.  相似文献   

6.
In a previous work, it was demonstrated that the bacterial transposon Tn5 is capable of undergoing sequence inversion via recombination between its duplicated IS50 elements when replicated by the herpes simplex virus type 1 (HSV-1) origin oris but not by the simian virus 40 (SV40) origin orisv. Further analysis of the latter phenomenon indicated that this lack of recombination was the result of topological constraints imposed by the SV40 minichromosome, such that recombination events could be readily detected in Tn5 derivatives in which the IS50 elements were arranged in a direct rather than inverted orientation. With this information, a second set of experiments were carried out to examine how the highly recombinogenic sequences which mediate the inversion of the long (L) and short (S) components of the HSV-1 genome behave in an SV40 minichromosome. Tandem copies of the L-S junction of the HSV-1 genome were observed to promote deletions in an SV40 shuttle plasmid at a frequency that was considerably greater than that of duplicated bacterial plasmid vector DNA. However, the presence of superinfecting HSV-1 did not enhance the frequency of these recombination events. These results support our previous findings that HSV-1 genome isomerization is mediated by a homologous recombination mechanism which is intimately associated with the act of viral DNA synthesis. Moreover, they demonstrate that the sequences which comprise the L-S junction appear to be inherently recombinogenic and, therefore, do not contain specific signals required for HSV-1 genome isomerization.  相似文献   

7.
The bacterial transposable element Tn5 was observed to undergo high-frequency sequence inversion when integrated into the herpes simplex virus type 1 (HSV-1) genome. Deletion analysis of the IS50 elements through which this recombination event occurred demonstrated the absence of cis-acting signals involved in the inversion process. Several observations suggested an intimate association of the recombination mechanism with HSV-1 DNA replication, including the ability of the seven viral genes that are essential for HSV-1 DNA synthesis to mediate Tn5 inversion in the absence of any other viral functions. Comparable results were obtained by using duplicate copies of the L-S junction of the HSV-1 genome. Thus inversion of the L and S components of the HSV-1 genome during productive infection does not appear to be a site-specific process, but rather is the result of generalized recombination mediated by the complex of gene products that replicate the viral DNA.  相似文献   

8.
The herpes simplex virus 1 (HSV-1) strain McKrae is highly virulent compared to other wild-type strains of HSV-1. To help us better understand the genetic determinants that lead to differences in the pathogenicity of McKrae and other HSV-1 strains, we sequenced its genome. Comparing the sequence of McKrae's genome to that of strain 17 revealed that the genomes differ by at least 752 single nucleotide polymorphisms (SNPs) and 86 insertion/deletion events (indels). Although the majority of these polymorphisms reside in noncoding regions, 241 SNPs and 10 indels alter the protein-coding sequences of 58 open reading frames. Some of these variations are expected to contribute to the pathogenic phenotype of McKrae.  相似文献   

9.
We report the full-genome sequence of an Indian isolate of bluetongue virus serotype 1 (BTV-1), strain IND1992/01. This is the first report of the entire genome sequence (Seg-1 to Seg-10) of an Eastern (e) strain of BTV-1. These sequence data provide a reference for BTV-1e that will help to define the phylogenetic relationships and geographic origins of distinct Indian lineages of BTV-1 as well as their relationships with other BTV strains from around the world. The availability of data for all 10 genome segments of this strain will also help to identify reassortment events involving this and other virus lineages.  相似文献   

10.
11.
Wang X  Zhang GR  Yang T  Zhang W  Geller AI 《BioTechniques》2000,28(1):102-107
Herpes simplex virus type 1 (HSV-1) plasmid vectors have a number of attractive features for gene transfer into neurons. In particular, the large size of the HSV-1 genome suggests that HSV-1 vectors might be designed to accommodate large inserts. We now report the construction and characterization of a 51 kb HSV-1 plasmid vector. This vector was efficiently packaged into HSV-1 particles using a helper virus-free packaging system. The structure of the packaged vector DNA was verified by both Southern blot and PCR analyses. A vector stock was microinjected into the rat striatum, the rats were sacrificed at 4 days after gene transfer, and numerous X-gal positive striatal cells were observed. This 51 kb vector was constructed using general principles that may support the routine construction of large vectors. Potential applications of such HSV-1 vectors include characterizing large promoter fragments or genomic clones and co-expressing multiple genes.  相似文献   

12.
Ouyang Q  Zhao X  Feng H  Tian Y  Li D  Li M  Tan Z 《Gene》2012,499(1):37-40
The presence, locations and composition of simple sequence repeats (SSRs) in Herpes simplex virus type 1 (HSV-1) genome were extracted and analyzed by using the software Imperfect Microsatellite Extractor (IMEx). There were 663 mon-, 502 di-, 184 tri-, 20 tetra-, 4 penta- and 4 hexanucleotide SSRs that were observed in different distribution between coding and noncoding regions in the HSV-1 genome. G/C, GC/CG, and (GGC)(n) were predominant in mononucleotide, dinucletide, trinucleotide repeats respectively. Indeed, the results showed that GC content in simple sequence repeats was notably higher than that in entire HSV-1 genome. Our data might be helpful for studying the pathogenesis, genome structure and evolution of HSV-1.  相似文献   

13.
14.
The wild-type herpes simplex virus 1 genome consists of two components, L and S, which invert relative to each other, giving rise to four isomers. Previously we reported the construction of a herpes simplex virus 1 genome, HSV-1(F)I358, from which 15 kilobase pairs of DNA spanning the junction between L and S components were deleted and which no longer inverted (Poffenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2690-2694, 1983). Further studies on the structure of HSV-1(F)I358 revealed the presence of two submolar populations among packaged DNA. The first, comprising no more than 10% of total packaged DNA, consisted of defective genomes with a subunit size of 36 kilobase pairs. The results suggest that this population arose by recombination through a directly repeated sequence inserted in place of the deleted L-S junction. The second minor population consisted of HSV-1(F)I358 DNA linked head-to-tail. Analyses of the structure of HSV-1(F)I358 DNA after infection indicated that the fraction of total DNA linked head-to-tail increased to approximately 40 to 50% within 30 min after exposure of cells to virus. The formation of head-to-tail linkages did not require de novo protein synthesis. Our interpretation of the results is that the termini of full-length DNA molecules are held together during packaging, that a small fraction of the termini is covalently linked during or after packaging, and that the remainder is covalently joined after the release of viral DNA from the infecting virus by either host or viral factors introduced into the cell during infection.  相似文献   

15.
Analysis of RyR1 structure function inmuscle cells is made difficult by the low (<5%) transfectionefficiencies of myoblasts or myotubes using calcium phosphate orcationic lipid techniques. We inserted the full-length 15.3-kb RyR1cDNA into a herpes simplex virus type 1 (HSV-1) amplicon vector,pHSVPrPUC between the ori/IE 4/5 promoter sequence and theHSV-1 DNA cleavage/packaging signal (pac). pHSVGN andpHSVGRyR1, two amplicons that expressed green fluorescent protein, wereused for fluorescence-activated cell sorter analysis of transductionefficiency. All amplicons were packaged into HSV-1 virusparticles using a helper virus-free packaging system and yielded106 transducing vector units/ml. HSVRyR1, HSVGRyR1, andHSVGN virions efficiently transduced mouse myoblasts and myotubes,expressing the desired product in 70-90% of the cells atmultiplicity of infection 5. The transduced cells appeared healthy andRyR1 produced by this method was targeted properly and restoredskeletal excitation-contraction coupling in dyspedic myotubes. Themyotubes produced sufficient protein to allow single-channel analysesfrom as few as 10 100-mm dishes. In most cases this method couldpreclude the need for permanent transfectants for the study of RyR1structure function.

  相似文献   

16.
K Umene 《Journal of virology》1989,63(5):1877-1883
A herpes simplex virus type 1 (HSV-1) strain, B3, was found to have a short duplication on the left junction between the unique sequence (US) and the inverted repeat sequence (RS) in the S component of the genome DNA. A short region of RS contiguous to the left US-RS junction was duplicated in B3. Based on the nucleotide sequences in and around the US-RS junctions of B3 and other HSV-1 strains, a concept of junction stretch was proposed. The organization of junction stretch is RS side 5'-(G or A stretch)AGC-3' US side. Introduction of the concept of junction stretch led to a definition of the structure in and around the US-RS junction, in the form common to HSV-1 strains. The right end of US in the HSV-1 genome was the A of the ATG initiation codon of gene US12, and thus the ATG triplet may act as a buffer to prevent expansion of RS, as is the case with HSV-2. The duplication in B3 was generated by a crossover event between a point on RS and the US side end of the left junction stretch. These observations suggest that the US side end of the junction stretch possesses the property of recombinogenicity, responsible for generation of the duplication in strain B3 and also for the formation of the US-RS junction of HSV.  相似文献   

17.
Recent studies based on animal models have shown the advantages and potential of oncolytic viral therapy using HSV-1 -based replication-competent vectors in the treatment of liver tumors, but little is known about the cellular targets that are modulated during viral infection. In the present work, we have studied the effects of intratumoral injections of HSV-1 Cgal+ strain in a murine model of human hepatoma xenografts. Viral replication was assessed for more than 1 month, leading to a significant reduction of tumor growth rate mediated, in part, by a cyclin B dependent cell proliferation arrest. Early events resulting in this effect were analyzed using a proteomic approach. Protein extracts from xenografted human hepatomas treated with saline or HSV-1 Cgal+ strain during 24 h were compared by 2-D DIGE and differential spots were identified by nanoLC-ESI-MS/MS. Alterations on glutathione S transferase 1 Omega, and ERp29 suggest novel HSV-1 Cgal+ targets in solid liver tumors. Additionally, ERp29 showed a complex differential isoform pattern upon HSV-1 Cgal+ infection, suggesting regulatory mechanisms based on post-translational modification events.  相似文献   

18.
19.
《Journal of Proteomics》2010,73(1):153-160
Recent studies based on animal models have shown the advantages and potential of oncolytic viral therapy using HSV-1 -based replication-competent vectors in the treatment of liver tumors, but little is known about the cellular targets that are modulated during viral infection. In the present work, we have studied the effects of intratumoral injections of HSV-1 Cgal+ strain in a murine model of human hepatoma xenografts. Viral replication was assessed for more than 1 month, leading to a significant reduction of tumor growth rate mediated, in part, by a cyclin B dependent cell proliferation arrest. Early events resulting in this effect were analyzed using a proteomic approach. Protein extracts from xenografted human hepatomas treated with saline or HSV-1 Cgal+ strain during 24 h were compared by 2-D DIGE and differential spots were identified by nanoLC-ESI-MS/MS. Alterations on glutathione S transferase 1 Omega, and ERp29 suggest novel HSV-1 Cgal+ targets in solid liver tumors. Additionally, ERp29 showed a complex differential isoform pattern upon HSV-1 Cgal+ infection, suggesting regulatory mechanisms based on post-translational modification events.  相似文献   

20.
The genome of a very virulent Marek's disease virus   总被引:15,自引:0,他引:15       下载免费PDF全文
Here we present the first complete genomic sequence, with analysis, of a very virulent strain of Marek's disease virus serotype 1 (MDV1), Md5. The genome is 177,874 bp and is predicted to encode 103 proteins. MDV1 is colinear with the prototypic alphaherpesvirus herpes simplex virus type 1 (HSV-1) within the unique long (UL) region, and it is most similar at the amino acid level to MDV2, herpesvirus of turkeys (HVT), and nonavian herpesviruses equine herpesviruses 1 and 4. MDV1 encodes 55 HSV-1 UL homologues together with 6 additional UL proteins that are absent in nonavian herpesviruses. The unique short (US) region is colinear with and has greater than 99% nucleotide identity to that of MDV1 strain GA; however, an extra nucleotide sequence at the Md5 US/short terminal repeat boundary results in a shorter US region and the presence of a second gene (encoding MDV097) similar to the SORF2 gene. MD5, like HVT, encodes an ICP4 homologue that contains a 900-amino-acid amino-terminal extension not found in other herpesviruses. Putative virulence and host range gene products include the oncoprotein MEQ, oncogenicity-associated phosphoproteins pp38 and pp24, a lipase homologue, a CxC chemokine, and unique proteins of unknown function MDV087 and MDV097 (SORF2 homologues) and MDV093 (SORF4). Consistent with its virulent phenotype, Md5 contains only two copies of the 132-bp repeat which has previously been associated with viral attenuation and loss of oncogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号