首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
New restriction endonuclease CviRI cleaves DNA at TG/CA sequences.   总被引:1,自引:0,他引:1       下载免费PDF全文
A new type II restriction endonuclease, CviRI, was isolated from virus XZ-6E infected chlorella cells. CviRI is the first restriction endonuclease to recognize the sequence 5'-TGCA-3' and cleaves DNA between the G and C residues to produce blunt-end termini. Methylation of the adenine or cytosine in 5'-TGCA-3' sequences prevents CviRI cleavage. Due to its sequence specificity, CviRI may be especially useful for detecting mutant alleles of many heritable human genetic diseases.  相似文献   

3.
A novel gene encoding a cytosine-5-DNA methyltransferase recognizing the dinucleotide GpC was cloned from Chlorella virus NYs-1 and expressed in both Escherichia coli and Saccharomyces cerevisiae . The gene was sequenced and a predicted polypeptide of 362 amino acids with a molecular weight of 41.903 kDa was identified. The protein contains several amino acid motifs with high similarity to those of other known 5-methylcytosine-forming methyltransferases. In addition, this enzyme, named M. Cvi PI, shares 66% identity and 76% similarity with M. Cvi JI, the only other cytosine-5-DNA methyltransferase cloned from a Chlorella virus. The short, frequently occurring recognition sequence of the new methyltransferase will be very useful for in vivo chromatin structure studies in both yeast and higher organisms.  相似文献   

4.
A second DNA site-specific (restriction) endonuclease (R.CviAII) and its cognate adenine DNA methyltransferase (M.CviAII) were isolated from virus PBCV-1 infected Chlorella strain NC64A cells. R.CviAII, a heteroschizomer of the bacterial restriction endonuclease NlaIII, recognizes the sequence CATG, and does not cleave CmATG sequences. However, unlike NlaIII, which cleaves after the G and does not cleave either CmATG or mCATG sequences, CviAII cleaves between the C and A and is unaffected by mCATG methylation. The M.CviAII and R.CviAII genes were cloned and their DNA sequences were determined. These genes are tandemly arranged head-to-tail such that the TAA termination codon of the M.CviAII methyltransferase gene overlaps the ATG translational start site of R.CviAII endonuclease. R.CviAII is the first chlorella virus site-specific endonuclease gene to be cloned and sequenced.  相似文献   

5.
6.
The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed.  相似文献   

7.
StsI endonuclease (R.StsI), a type IIs restriction endonuclease found in Streptococcus sanguis 54, recognizes the same sequence as FokI but cleaves at different positions. A DNA fragment that carried the genes for R.StsI and StsI methylase (M.StsI) was cloned from the chromosomal DNA of S.sanguis 54, and its nucleotide sequence was analyzed. The endonuclease gene was 1,806 bp long, corresponding to a protein of 602 amino acid residues (M(r) = 68,388), and the methylase gene was 1,959 bp long, corresponding to a protein of 653 amino acid residues (M(r) = 76,064). The assignment of the endonuclease gene was confirmed by analysis of the N-terminal amino acid sequence. Genes for the two proteins were in a tail-to-tail orientation, separated by a 131-nucleotide intercistronic region. The predicted amino acid sequences between the StsI system and the FokI system showed a 49% identity between the methylases and a 30% identity between the endonucleases. The sequence comparison of M.StsI with various methylases showed that the N-terminal half of M.StsI matches M.NIaIII, and the C-terminal half matches adenine methylases that recognize GATC and GATATC.  相似文献   

8.
Analysis of the Sendai virus M gene and protein.   总被引:12,自引:4,他引:8       下载免费PDF全文
The nucleotide sequence of the Sendai virus M (matrix or membrane) gene region was determined from cloned genomic DNA, and the limits of the M mRNA were determined by S1 nuclease mapping. The M mRNA is 1,173 nucleotides long and contains a single long open reading frame coding for a protein of 348 amino acids. The amino acid sequences of the N- and C-terminal peptides of the M protein were obtained by mass spectrometric analysis and correspond to those predicted from the open reading frame, with the N terminus modified in vivo by cleavage of the initiating methionine and acetylation of the following amino acid. The amphiphilic nature of the M protein structure is discussed.  相似文献   

9.
The enzymes of the Bacillus subtilis BsuBI restriction/modification (R/M) system recognize the target sequence 5'CTGCAG. The genes of the BsuBI R/M system have been cloned and sequenced and their products have been characterized following overexpression and purification. The gene of the BsuBI DNA methyltransferase (M.BsuBI) consists of 1503 bp, encoding a protein of 501 amino acids with a calculated M(r) of 57.2 kD. The gene of the restriction endonuclease (R.BsuBI), comprising 948 bp, codes for a protein of 316 amino acids with a predicted M(r) of 36.2 kD. M.BsuBI modifies the adenine (A) residue of the BsuBI target site, thus representing the first A-N6-DNA methyltransferase identified in B. subtilis. Like R.PstI, R.BsuBI cleaves between the A residue and the 3' terminal G of the target site. Both enzymes of the BsuBI R/M system are, therefore, functionally identical with those of the PstI R/M system, encoded by the Gram negative species Providencia stuartii. This functional equivalence coincides with a pronounced similarity of the BsuBI/PstI DNA methyltransferases (41% amino acid identity) and restriction endonucleases (46% amino acid identity). Since the genes are also very similar (58% nucleotide identity), the BsuBI and PstI R/M systems apparently have a common evolutionary origin. In spite of the sequence conservation the gene organization is strikingly different in the two R/M systems. While the genes of the PstI R/M system are separated and transcribed divergently, the genes of the BsuBI R/M system are transcribed in the same direction, with the 3' end of the M gene overlapping the 5' end of the R gene by 17 bp.  相似文献   

10.
To clone the genes encoding lysis protein from a Chlorella virus, water samples were collected from 13 aquatic environments located in the Kanto area of Japan. Eight water samples contained plaque-forming viruses on Chlorella sp. NC64A, but no virus was detected in the other five samples. A novel Chlorella virus, CVN1, was isolated from the Inba-numa marsh sample. CVN1 genomic DNA was partially digested and shotgun cloned into pUC118 to identify the genomic region responsible for the lytic phenotype on Chlorella sp. NC64A. A DNA fragment which encoded two ORFs, ORF1 and ORF2, was obtained by antialgal assay. The ORF2 gene product, CL2, consisted of 333 amino acids showing antialgal activity not only on the original host of Chlorella sp. NC64A, but also on the heterogeneous hosts of Chlorella vulgaris C-27 and C. vulgaris C-207. CL2 showed a weak homology (19.8% amino acid identity) to mannuronate lyase SP2 from Turbo cornutus. CL2 in Escherichia coli cells was purified using a nickel chelate column. Lyase activity of purified CL2 on alginic acid was observed in an enzyme assay. The specific activity of purified CL2 was 2.1x10(-2) U mg(-1), the optimum pH for enzymatic activity was 10.5, and Ca(2+) was required for enzyme activity. This is the first report of a Chlorella virus protein with lyase activity.  相似文献   

11.
12.
13.
Temperate bacteriophage Mx8 of Myxococcus xanthus encapsidates terminally repetitious DNA, packaged as circular permutations of its 49-kbp genome. During both lytic and lysogenic development, Mx8 expresses a nonessential DNA methylase, Mox, which modifies adenine residues in occurrences of XhoI and PstI recognition sites, CTCGAG and CTGCAG, respectively, on both phage DNA and the host chromosome. The mox gene is necessary for methylase activity in vivo, because an amber mutation in the mox gene abolishes activity. The mox gene is the only phage gene required for methylase activity in vivo, because ectopic expression of mox as part of the M. xanthus mglBA operon results in partial methylation of the host chromosome. The predicted amino acid sequence of Mox is related most closely to that of the methylase involved in the cell cycle control of Caulobacter crescentus. We speculate that Mox acts to protect Mx8 phage DNA against restriction upon infection of a subset of natural M. xanthus hosts. One natural isolate of M. xanthus, the lysogenic source of related phage Mx81, produces a restriction endonuclease with the cleavage specificity of endonuclease BstBI.  相似文献   

14.
The mrr gene of Escherichia coli K-12 is involved in the acceptance of foreign DNA which is modified. The introduction of plasmids carrying the HincII, HpaI, and TaqI R and M genes is severely restricted in E. coli strains that are Mrr+. A 2-kb EcoRI fragment from the plasmid pBg3 (B. Sain and N. E. Murray, Mol. Gen. Genet. 180:35-46, 1980) was cloned. The resulting plasmid restores Mrr function to mrr strains of E. coli. The boundaries of the mrr gene were determined from an analysis of subclones, and plasmids with a functional mrr gene produce a polypeptide of 33.5 kDa. The nucleotide sequence of the entire fragment was determined; in addition to mrr, it includes two open reading frames, one of which encodes part of the hsdR. By using Southern blot analysis, E. coli RR1 and HB101 were found to lack the region containing mrr. The acceptance of various cloned methylases in E. coli containing the cloned mrr gene was tested. Plasmid constructs containing the AccI, CviRI, HincII, Hinfl (HhaII), HpaI, NlaIII, PstI, and TaqI N6-adenine methylases and SssI and HhaI C5-cytosine methylases were found to be restricted. Plasmid constructs containing 16 other adenine methylases and 12 cytosine methylases were not restricted. No simple consensus sequence causing restriction has been determined. The Mrr protein has been overproduced, an antibody has been prepared, and the expression of mrr under various conditions has been examined. The use of mrr strains of E. coli is suggested for the cloning of N6-adenine and C5-cytosine methyl-containing DNA.  相似文献   

15.
16.
A gene from the periodontal organism Porphyromonas gingivalis has been identified as encoding a DNA methylase. The gene, referred to as pgiIM, has been sequenced and found to contain a reading frame of 864 basepairs. The putative amino acid sequence of the encoded methylase was 288 amino acids, and shared 47% and 31% homology with the Streptococcus pneumoniae DpnII and E. coli Dam methylases, respectively. The activity and specificity of the pgi methylase (M.PgiI) was confirmed by cloning the gene into a dam- strain of E. coli (JM110) and performing a restriction analysis on the isolated DNA with enzymes whose activities depended upon the methylation state of the DNA. The data indicated that M.PgiI, like DpnII and Dam, methylated the adenine residue within the sequence 5'-GATC-3'.  相似文献   

17.
RsrI DNA methyltransferase (M-RsrI) from Rhodobacter sphaeroides has been purified to homogeneity, and its gene cloned and sequenced. This enzyme catalyzes methylation of the same central adenine residue in the duplex recognition sequence d(GAATTC) as does M-EcoRI. The reduced and denatured molecular weight of the RsrI methyltransferase (MTase) is 33,600 Da. A fragment of R. sphaeroides chromosomal DNA exhibited M.RsrI activity in E. coli and was used to sequence the rsrIM gene. The deduced amino acid sequence of M.RsrI shows partial homology to those of the type II adenine MTases HinfI and DpnA and N4-cytosine MTases BamHI and PvuII, and to the type III adenine MTases EcoP1 and EcoP15. In contrast to their corresponding isoschizomeric endonucleases, the deduced amino acid sequences of the RsrI and EcoRI MTases show very little homology. Either the EcoRI and RsrI restriction-modification systems assembled independently from closely related endonuclease and more distantly related MTase genes, or the MTase genes diverged more than their partner endonuclease genes. The rsrIM gene sequence has also been determined by Stephenson and Greene (Nucl. Acids Res. (1989) 17, this issue).  相似文献   

18.
R L Roper  L G Payne    B Moss 《Journal of virology》1996,70(6):3753-3762
With the aid of three monoclonal antibodies (MAbs), a glycoprotein specifically localized to the outer envelope of vaccinia virus was shown to be encoded by the A33R gene. These MAbs reacted with a glycosylated protein that migrated as 23- to 28-kDa and 55-kDa species under reducing and nonreducing conditions, respectively. The protein recognized by the three MAbs was synthesized by all 11 orthopoxviruses tested: eight strains of vaccinia virus (including modified vaccinia virus Ankara) and one strain each of cowpox, rabbitpox, and ectromelia viruses. The observation that the protein synthesized by ectromelia virus-infected cells reacted with only one of the three MAbs provided a means of mapping the gene encoding the glycoprotein. By transfecting vaccinia virus DNA into cells infected with ectromelia virus and assaying for MAb reactivity, we mapped the glycoprotein to the A33R open reading frame. The amino acid sequence and hydrophilicity plot predicted that the A33R gene product is a type II membrane protein with two asparagine-linked glycosylation sites. Triton X-114 partitioning experiments indicated that the A33R gene product is an integral membrane protein. The ectromelia virus homolog of the vaccinia virus A33R gene was sequenced, revealing 90% predicted amino acid identity. The vaccinia and variola virus homolog sequences predict 94% identical amino acids, the latter having one fewer internal amino acid. Electron microscopy revealed that the A33R gene product is expressed on the surface of extracellular enveloped virions but not on the intracellular mature form of virus. The conservation of this protein and its specific incorporation into viral envelopes suggest that it is important for virus dissemination.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号