首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slices from the brain and liver of rats were prepared and upon incubation exhibited a continuous and high capacity for incorporation of radioactive precursors into proteins and lipids. Using [3H]mevalonate as precursor, the rates of biosynthesis of cholesterol, ubiquinone, dolichol and dolichyl-P in brain slices were determined and found to be 5.5, 0.25, 0.0093 and 0.0091 nmol/h/g, respectively. Dolichol and dolichyl-P accumulate to a limited extent, but almost all of these lipids in the brain originate from de novo synthesis. The calculated half-lives for cholesterol, ubiquinone, dolichol and dolichyl-P were 4076, 90, 1006 and 171 h, respectively. The results indicate that lipids formed via the mevalonate pathway in the brain have an active and independently regulated biosynthesis.  相似文献   

2.
Rats were treated with inducers of peroxisomes, mitochondria and the endoplasmic reticulum, as well as receiving diets and drug known to influence the mevalonate pathway. Treatment with clofibrate and 2-diethylhexylphthalate (DEHP) increased microsomal and mitochondrial ubiquinone contents, but a decrease was observed in lysosomes. In vivo labeling of this lipid with [3H]mevalonate was also elevated. The amount of cholesterol did not change upon exposure to these inducers of peroxisomes and mitochondria, but its rate of labeling was decreased. The concentration of dolichol increased only after treatment with DEHP and only in lysosomes. The inducers of the endoplasmic reticulum phenobarbital, 3-methylcholanthrene and N-nitrosodiethylamine enhanced the rate of ubiquinone synthesis and exposure to the latter two substances also elevated the amount of this lipid in microsomes. A cholesterol-rich diet increased the labeling of ubiquinone and decreased cholesterol labeling, while cholestyramine treatment had opposite effects on lipid labeling in both microsomes and mitochondria. The results demonstrate that the ubiquinone contents of the various membranes of hepatocytes change in a characteristic manner under the influence of inducers and dietary factors. Clearly, the level of ubiquinone and its biosynthesis are regulated separately from those of the other products of the mevalonate pathway, cholesterol and dolichol.  相似文献   

3.
Incorporation of [14C]mevalonate into dolichol and other isoprenoid compounds by chick oviduct explants has been studied. A reliable assay of dolichol biosynthesis employing several chromatographic procedures, including two-dimentional TLC, was developed. Incorporation of [14C]mevalonate into dolichol by oviduct explants was linear for at least 6 h. The effect of estrogen-induced differentiation was studied by incubation of explants obtained from chicks treated for various periods of time with diethylstilbestrol. Mevalonate incorporation into dolichol, when expressed as cpm per g of tissue, was not affected by estrogen treatment, but since the oviduct increased about 100-fold in mass during differentiation, each oviduct synthesizes about 100-fold more dolichol. In most tissues, the major product of mevalonate incorporation is cholesterol. However, although approx. 90% of the non-saponifiable 14C-labeled compounds were in the so-called 'cholesterol fraction', oviduct explants from estrogenized chicks synthesized little, if any, cholesterol. A number of cholesterol biosynthetic intermediates were observed, with compounds comigrating with squalene and lanosterol accounting for about 50% of the total. Since the estrogenized chick has serum cholesterol levels in the range of 800-900 mg/dl, these results suggest that oviduct has secondary control points which allow it to inhibit cholesterol synthesis when mevalonate is used as the precursor. In support of this hypothesis is the observation that explants from untreated chicks can incorporate mevalonate into cholesterol.  相似文献   

4.
The rate of dolichol synthesis in normal and diabetic liver slices in the presence or absence of insulin was investigated with radiolabeled acetate and mevalonate as substrates. Cholesterol and dolichol syntheses were found low in diabetic rat liver slices when incubated either with 1-14C-acetate or 2-3H-mevalonate. In the presence of insulin, cholesterol and dolichol synthesis in diabetic rat liver slices returned to normal in nine hours when incubated with 1-14C-acetate; however, with 2-3H-mevalonate, synthesis of cholesterol and dolichol normalized in about three hours. These studies show that dolichol synthesis in rat liver slices is dependent on insulin.  相似文献   

5.
Rats were treated with mevinolin by intraperitoneal injection (15 days) or dietary administration (30 days). The cholesterol, dolichol, dolichyl phosphate and ubiquinone contents of the liver, brain, heart, muscle and blood were then investigated. The cholesterol contents of these organs did not change significantly, with the exception of muscle. Intraperitoneal administration of the drug increases the amount of dolichol in liver, muscle and blood and decreases the dolichyl-P amount in muscle. The same treatment increases the level of ubiquinone in muscle and blood and decreases this value in liver and heart. Oral administration decreases dolichol, dolichyl-P and ubiquinone levels in heart and muscle, while in liver the dolichol level is elevated and ubiquinone level lowered. In brain the amount of dolichyl-P is increased. Intraperitoneal injection of mevinolin also modifies the liver dolichol and dolichyl-P isoprenoid pattern, with an increase in shorter chain polyisoprenes. The levels of dolichol and ubiquinone in the blood do not follow the changes observed in other tissues. Incorporation of [3H]acetate into cholesterol by liver slices prepared from mevinolin-treated rats exhibited an increase, whereas in brain no change was seen. Labeling of dolichol and ubiquinone was increased in both liver and brain, but incorporation into dolichyl phosphate remained relatively stable. The results indicate that mevinolin affects not only HMG-CoA reductase but, to some extent, also affects certain of the peripheral enzymes, resulting in considerable effects on the various mevalonate pathway lipids.  相似文献   

6.
Smith-Lemli-Opitz syndrome (SLOS) is an inherited autosomal recessive cholesterol deficiency disorder. Our studies have shown that in SLOS children, urinary mevalonate excretion is normal and reflects hepatic HMG-CoA reductase activity but not ultimate sterol synthesis. Hence, we hypothesized that in SLOS there may be increased diversion of mevalonate to nonsterol isoprenoid synthesis. To test our hypothesis, we measured urinary dolichol and ubiquinone, two nonsterol isoprenoids, in 16 children with SLOS and 15 controls, all fed a low-cholesterol diet. The urinary excretion of both dolichol (P < 0.002) and ubiquinone (P < 0.02) in SLOS children was 7-fold higher than in control children, whereas mevalonate excretion was comparable. In a subset of 12 SLOS children, a high-cholesterol diet decreased urinary mevalonate excretion by 61% (P < 0.001), dolichol by 70% (P < 0.001), and ubiquinone by 67% (P < 0.03). Our hypothesis that in SLOS children, normal urinary mevalonate excretion results from increased diversion of mevalonate into the production of nonsterol isoprenoids is supported. Dietary cholesterol supplementation reduced urinary mevalonate and nonsterol isoprenoid excretion but did not change the relative ratios of their excretion. Therefore, in SLOS, a secondary peripheral regulation of isoprenoid synthesis may be stimulated.  相似文献   

7.
The regenerating liver presents a changed ability to use mevalonate 16 hr after partial hepatectomy. The dolichol content and its synthesis from mevalonate is increased, while no variation of dolichyl-P and ubiquinone parameters are detectable.The greater amount ofmevalonate utilized to form dolichol, but not dolichyl-P, in this proliferating system, raises some questions about the physiological significance of these isoprenoid compounds and about their biosynthetic sequence.  相似文献   

8.
The concentrations of dolichol and cholesterol in livers of rats maintained for 2 weeks on a diet enriched with cholesterol (1%) were significantly higher than those in animals on a normal diet. The incorporation of radioactive mevalonate into dolichol and into a dolichyl diphosphate oligosaccharide fraction by liver slices of the cholesterol-fed animals was increased over that of the control group. However, the incorporation of radioactive mevalonate into cholesterol was decreased, as was the incorporation of radioactive acetate into both dolichol and, more markedly, cholesterol. These results are consistent with cholesterol feeding causing partial inhibition of the cholesterol-biosynthetic pathway both at β-hydroxy-β-methylglutaryl coenzyme A reductase and at a step after farnesyl pyrophosphate formation, resulting in a greater flux of mevalonate to dolichol and an increase in pool sizes of precursors of β-hydroxy-β-methylglutaryl coenzyme A. Maximal activity of glycosyl transfer to dolichyl phosphate was greater in microsomal preparations from livers of cholesterol-fed animals compared with those of control animals. A corresponding higher degree of in vitro glycosylation of endogenous protein was also observed. It is concluded that the cholesterol-enriched diet caused an increase in the biosynthesis and concentration of dolichyl monophosphate which resulted in a higher level of N-glycosylation of protein. These effects were complicated by differences in the kinetics of glycosyl transfer and in its response to exogenous dolichyl monophosphate.  相似文献   

9.
The biosynthesis of ubiquinone-8 from radioactive mevalonate by cultures of Tetrahymena pyriformis is demonstrated. Under normal conditions the incorporation of this radioactive precursor into ubiquinone and the triterpenoid alcohol tetrahymanol reflects the amounts of these two compounds in the cell. Growth of T. pyriformis in the presence of cholesterol results in a complete inhibition of incorporation of radioactive mevalonate into tetrahymanol while there is a corresponding increase of radioactive incorporation into ubiquinone. This increased incorporation of mevalonic acid into ubiquinone must reflect a reduced level of mevalonic acid in the cell under these conditions and is not due to increased ubiquinone biosynthesis, indicating tight regulation of the pathway prior to mevalonate formation.  相似文献   

10.
The effects of two peroxisome proliferators, gemfibrozil and clofibrate, on syntheses of dolichol and cholesterol in rat liver were investigated. Gemfibrozil did not affect the overall content of dolichyl phosphate, but it changed the chain-length distribution of dolichyl phosphate, increasing the levels of species with shorter isoprene units. Gemfibrozil suppressed synthesis of dolichyl phosphate from [(3)H]mevalonate and [(3)H]farnesyl pyrophosphate in rat liver. In contrast, clofibrate increased the content of dolichol (free and acyl ester forms). It remarkably enhanced dolichol synthesis from mevalonate, but did not affect dolichol synthesis from farnesyl pyrophosphate. Gemfibrozil elevated cholesterol synthesis from [(14)C]acetate, but did not affect the synthesis from mevalonate. Clofibrate suppressed cholesterol synthesis from acetate, but did not affect cholesterol synthesis from mevalonate. These results suggest that gemfibrozil suppresses synthesis of dolichyl phosphate by inhibiting, at the least, the pathway from farnesyl pyrophosphate to dolichyl phosphate. As a result, the chain-length pattern of dolichyl phosphate may show an increase in shorter isoprene units. Clofibrate may increase the content of dolichol by enhancing dolichol synthesis from mevalonate. Gemfibrozil may increase cholesterol synthesis by activating the pathway from acetate to mevalonate. Unlike gemfibrozil, clofibrate may decrease cholesterol synthesis by inhibiting the pathway from acetate to mevalonate.  相似文献   

11.
Abstract: Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-β-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. The data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway.  相似文献   

12.
The control of ubiquinone biosynthesis by peroxisome proliferators was investigated using peroxisome proliferator activated receptor alpha (PPARalpha)-null mice. Administration of 2-(diethylhexyl)phthalate to control mice resulted in elevated ubiquinone levels in the liver, while dolichol, dolichyl-P and cholesterol concentrations remained unchanged. In PPARalpha-null mice, the level of these lipids were similar to control levels and administration of the peroxisome proliferator did not increase the levels of ubiquinone. The increase in ubiquinone levels was the result of increased synthesis. Induction was most pronounced in liver, kidney and heart, which have relatively high levels of PPARalpha. When the tissue concentration of hydrogen peroxide was elevated by inhibition of catalase activity with aminotriazole, the amount of ubiquinone was not increased, suggesting that the induction of ubiquinone synthesis occured through a direct mechanism. The activities of branch-point enzymes FPP-synthase, squalene synthase, cis-prenyltransferase, trans-prenyltransferase and NPHB-transferase were substantially increased in control but not in PPARalpha-null mice after treatment with peroxisome proliferators. These data suggest that the induction of ubiquinone biosynthesis after administration of peroxisome proliferators is dependent on the PPARalpha through regulation of some of the mevalonate pathway enzymes.  相似文献   

13.
Biosynthesis of dolichol by rat liver peroxisomes   总被引:1,自引:0,他引:1  
The ability of peroxisomes and microsomes to synthesize dolichol from [3H]mevalonate, [3H]isopentenyl-P2 or [3H]farnesyl-P2 in vitro was investigated. It was found that isoprenoid biosynthesis also occurs in peroxisomes and that this process demonstrates properties differing from those of isoprenoid biosynthesis by microsomes. The pH optimum in peroxisomes was 8.0 and, in contrast to microsomes, the peroxisomal biosynthesis was largely insensitive to detergents. After treatment with proteolytic enzymes, microsomes lost their capacity to incorporate [3H]mevalonate into dolichol, whereas proteolysis of intact peroxisomes did not influence their corresponding rate of incorporation. The soluble content of peroxisomes was separated from the membranes and found to demonstrate half of the biosynthetic capacity of the intact organelle. Fasting and cholestyramine treatment decreased only the microsomal incorporation of [3H]mevalonate into dolichol, while treatment with clofibrate, di-2-ethylhexyl phthalate or phenobarbital increased microsomal, but decreased peroxisomal labeling. After injection of [3H]mevalonate into the portal vein of rats, high initial labeling of dolichol was recovered both in isolated microsomes and peroxisomes, whereas when [3H]glycerol was administered, peroxisomal phospholipids became labeled later than the corresponding microsomal constituents. These results support the conclusion that dolichol is synthesized both in peroxisomes and the endoplasmic reticulum, but that the biosynthetic processes at these two locations have different properties.  相似文献   

14.
Abstract: To investigate the perturbation of ubiquinone biosynthesis by a hypocholesterolemic drug, 3β-(2-di-ethylaminoethoxy)androst-5-en-17-one hydrochloride (U18666A), we measured the incorporation of radioactive mevalonate, methionine, tyrosine, and 4-hydroxybenzoic acid into ubiquinone in glioblastoma cells. These four precursors unanimously showed that ubiquinone biosynthesis was not significantly altered by U18666A, which blocked cholesterol biosynthesis at steps beyond mevalonate formation. The fluctuation of the endogenous mevalonate level had little effect on ubiquinone biosynthesis, implying the relative stability of cellular ubiquinone biosynthesis. Furthermore, exogenously added mevalonate did not have an appreciable effect on ubiquinone biosynthesis. The major ubiquinone produced in rat glioblastoma cells was identified as ubiquinone-9. The mevalonate-derived products accumulated in the U18666A-treated cells differed significantly from those reported in a broken cell study, suggesting the existence of delicate mechanisms regulating the formation of cholesterol intermediates.  相似文献   

15.
Following treatment of Chinese hamster ovary cells with inhibitors of mevalonate biosynthesis in the presence of exogenous cholesterol, the cellular concentration of phosphorylated dolichol and the incorporation of [3H]mannose into dolichol-linked saccharides and N-linked glycoproteins declined coincident with a decline in DNA synthesis. Addition of mevalonate to the culture medium increased rates of mannose incorporation into lipid-linked saccharides and restored mannose incorporation into N-linked glycoproteins to control levels within 4 h. After an additional 4 h, synchronized DNA synthesis began. Inhibition of the synthesis of lipid-linked oligosaccharides and N-linked glycoproteins by tunicamycin prevented the induction of DNA synthesis by mevalonate, indicating that glycoprotein synthesis was required for cell division. The results suggest that the rate of cell culture growth may be influenced by the level of dolichyl phosphate acting to limit the synthesis of N-linked glycoproteins.  相似文献   

16.
The feeding of rabbits with a diet supplemented with 2% cholesterol caused a significant increase in the concentration of serum and hepatic microsomal cholesterol while not affecting serum high-density lipoprotein cholesterol concentration. The concentration of cytochrome b5 was also increased in the cholesterol-fed rabbits but no change in the concentration of cytochrome P-450 was apparent. The increase in microsomal cholesterol was accompanied by an inhibition of hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and a marked stimulation of acyl-coenzyme A:cholesterol acyltransferase activity. The incorporation of [1-14C]acetate into cholesterol and dolichol was strongly inhibited in liver slices of cholesterol-fed animals. In contrast, while incorporation of [2-14C]mevalonate into cholesterol was also inhibited by approximately 90%, incorporation of this precursor into dolichol was stimulated fourfold. The increased incorporation of mevalonate into dolichol was consistent with a threefold increase in the activity of the dolichol phosphate-dependent mannosyl transferase. The possible significance of these differences is discussed.  相似文献   

17.
25-Hydroxycholesterol treatment of the aortic smooth muscle cell inhibited the incorporation of acetate but not mevalonate into dolichol and cholesterol by 91 and 82%, respectively, and diminished the synthesis from glucose of cholesterol, dolichylpyrophosphoryl oligosaccharide, and dolichol-dependent glycoproteins. The dolichol-bound oligosaccharide unit contained approximately 10 Man/2 Glc/2 GlcNAc residues and appeared to be a precursor to protein-bound saccharide units which contained on the average 8 Man/1 Glc/2 GlcNAc residues. Mevalonate was found to protect the cells against the effect 25-hydroxycholesterol and to restore normal cellular synthesis of dolichyl saccharides and glycoproteins. It is suggested that hydroxymethylglutaryl coenzyme A reductase may function as a rate-controlling enzyme in the biosynthesis of not only sterols but also dolichols, and may as a result regulate the assembly of certain cellular glycoproteins.  相似文献   

18.
The activities of 3-hydroxy-3-methylglutaryl-coenzyme A synthase and reductase were assayed in exponentially growing LM fibroblasts and Friend murine erythroleukemia cells isolated at various stages of the cell cycle by centrifugal elutriation. The activities of these enzymes were similar in all phases of the cell cycle, regardless of whether the cells were cultured in the presence or absence of serum. These observations were confirmed in murine erythroleukemia cells synchronized by recultivation of pure populations of G1 cells. The incorporation of [14C]acetate or 3H2O into sterols decreased by 30-50% in later stages of the cell cycle, whereas the incorporation of [14C]acetate into ubiquinone increased as the cells progressed toward mitosis. Similar changes in the labeling of sterols compared to ubiquinone and dolichol were observed when [3H]mevalonate was used, suggesting that cell cycle-dependent alterations may occur in the flux of farnesyl pyrophosphate into the various branches of the isoprenoid pathway. Synchronized murine erythroleukemia cells incorporated [3H]mevalonate into protein-bound isoprenyl groups at all stages of the cell cycle, and there were no substantial changes in the electrophoretic profiles of these labeled polypeptides. The finding that the activities of the enzymes regulating mevalonate synthesis did not vary substantially during the cell cycle implies that changes in the endogenous mevalonate pool probably do not play a limiting role in regulating cell cycle traverse when cells are undergoing exponential growth. Although small cell cycle-dependent changes may occur in the relative activity of various post-mevalonate branches of the isoprenoid biosynthetic pathway, there is no evidence that synthesis of any major isoprenoid end product is confined exclusively to a specific phase of the cell cycle.  相似文献   

19.
1. Feeding of alpha-p-chlorophenoxyisobutyrate (CPIB) to rats increased ubiquinone concentration in the liver but not in other tissues. The increase was progressive with the time of feeding and related to the concentration of CPIB in the diet. 2. Incorporation of [1-(14)C]acetate, but not of [2-(14)C]mevalonate, into sterols in the liver in vivo or by liver slices in vitro was decreased on feeding the rats with CPIB. However, incorporation of mevalonate into ubiquinone increased. 3. CPIB, when added in low concentrations to liver slices, had no effect on isoprene synthesis from acetate; higher concentrations, however, were inhibitory. 4. No activation of ubiquinone synthesis from mevalonate was observed when CPIB was added to the liver slices synthesizing ubiquinone. 5. The increase in ubiquinone in CPIB-fed animals appears to be due to increased synthesis in the initial stages and to decreased catabolism in the later stages. 6. An inverse relationship was found between the concentration of ubiquinone in the liver and the serum sterol concentration in CPIB-fed rats.  相似文献   

20.
Previous studies have indicated that the early steps in the isoprenoid/cholesterol biosynthetic pathway occur in peroxisomes. However, the role of peroxisomes in cholesterol biosynthesis has recently been questioned in several reports concluding that three of the peroxisomal cholesterol biosynthetic enzymes, namely mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase, do not localize to peroxisomes in human cells even though they contain consensus peroxisomal targeting signals. We re-investigated the subcellular localization of the cholesterol biosynthetic enzymes of the pre-squalene segment in human cells by using new stable isotopic techniques and data computations with isotopomer spectral analysis, in combination with immunofluorescence and cell permeabilization techniques. Our present findings clearly show and confirm previous studies that the pre-squalene segment of the cholesterol biosynthetic pathway is localized to peroxisomes. In addition, our data are consistent with the hypothesis that acetyl-CoA derived from peroxisomal β-oxidation of very long-chain fatty acids and medium-chain dicarboxylic acids is preferentially channeled to cholesterol synthesis inside the peroxisomes without mixing with the cytosolic acetyl-CoA pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号