首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), were used as the source of exogenous NO to study the effect of NO upon germination of sorghum (Sorghum bicolor (L.) Moench) seeds through its possible interaction with iron. Modulation of cellular Fe status could be an important factor for the establishment of oxidative stress and the regulation of plant physiology. Fresh and dry weights of the embryonic axes were significantly increased in the presence of 0.1 mM SNP, as compared to control. Spin trapping EPR was used to assess the NO content in axes from control seeds after 24 h of imbibition (2.4+/-0.2 nmol NO g(-1) FW) and seeds exposed to 0.01, 0.1, and 1 mM SNP (3.1+/-0.3, 4.6+/-0.2, and 6.0+/-0.9 nmol NO g(-1) FW, respectively) and 1 mM DETA NONOate (6.2+/-0.6 nmol NO g(-1) FW). Incubation of seeds with 1 mM SNP protected against oxidative damage to lipids and maintained membrane integrity. The content of the deferoxamine-Fe (III) complex significantly increased in homogenates of axes excised from seeds incubated in the presence of 1 mM SNP or 1 mM DETA NONOate as compared to the control (19+/-2 nmol Fe g(-1) FW, 15.2+/-0.5 nmol Fe g(-1) FW, and 8+/-1 nmol Fe g(-1) FW, respectively), whereas total Fe content in the axes was not affected by the NO donor exposure. Data presented here provide experimental evidence to support the hypothesis that increased availability of NO drives not only protective effects to biomacromolecules, but to increasing the Fe availability for promoting cellular development as well.  相似文献   

2.
3-Morpholinosyndnomine (SIN-1) has been reported to be a peroxynitrite (OONO(-)) donor because it produces both nitric oxide (NO) and superoxide (O(2)(-).) upon decomposition in aqueous solution. However, SIN-1 can decompose to primarily NO in the presence of electron acceptors, including those found in biological tissues, making it necessary to determine the release product(s) formed in any given biological system. In a mixed cortical cell culture system, SIN-1 caused a concentration-dependent increase in cortical cell injury with a parallel increase in the release of cellular proteins containing 3-nitrotyrosine into the culture medium. The increase in 3-nitrotyrosine immunoreactivity, a footprint of OONO(-) production, was specific for SIN-1 as exposure to neurotoxic concentrations of an NO donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl) aminodiazen-1-ium-1,2-diolate (DETA/NO), or NMDA did not result in the nitration of protein tyrosine residues. Both SIN-1-induced injury and 3-nitrotyrosine staining were prevented by the addition of either 5,10,15,20-Tetrakis (4-sulfonatophenyl) prophyrinato iron (III) [FeTPPS], an OONO(-) decomposition catalyst, or uric acid, an OONO(-) scavenger. Removal of NO alone was sufficient to inhibit the formation of OONO(-) from SIN-1 as well as its cytotoxicity. Removal of O(2)(-). and the subsequently formed H(2)O(2) by superoxide dismutase (SOD) plus catalase likewise prevented the nitration of protein-bound tyrosine but actually enhanced the cytotoxicity of SIN-1, indicating that cortical cells can cope with the oxidative but not the nitrosative stress generated. Finally, neural injury induced by SIN-1 in unadulterated cortical cells was prevented by antagonism of AMPA/kainate receptors, while blockade of the NMDA receptor was without effect. In contrast, activation of both NMDA and non-NMDA receptors contributed to the SIN-1-mediated neurotoxicity when cultures were exposed in the presence of SOD plus catalase. Thus, whether SIN-1 initiates neural cell death in an OONO(-)-dependent or -independent manner is determined by the antioxidant status of the cells. Further, the mode of excitotoxicity by which injury progresses is determined by the NO-related species generated.  相似文献   

3.
Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourth-generation pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to beta-phenyl-1,N2-etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs.  相似文献   

4.
Nitric oxide (NO) alters the opening of mitochondrial permeability transition pore (mPTP). However, the signaling pathways of NO on mPTP remain elusive. We aimed to clarify the contribution of thiol-mediated responses to the effects of NO on mPTP in permeabilized myocytes. We found that (1) a high concentration of spermine NONOate (an NO donor; 500 μM) opened mPTP and depolarized ΔΨ(m). (2) A low concentration of NONOate (5 μM) prevented atractyloside (an mPTP opener)-induced mPTP opening. (3) Mn(III) tetrakis (4-benzoic acid) porphyrin (Mn-TBAP, ONOO(-) scavenger) attenuated the effect of high-concentration NONOate on mPTP opening, but did not inhibited the preventive effects of low-concentration NONOate. (4) When the interaction of NO with thiol was inhibited by N-ethylmaleimide, the opening (by high-concentration NONOate) and preventive effects (by low-concentration NONOate) of NONOate on mPTP were blocked. (5) Dithiothreitol (an inhibitor of disulfide bonds formation) prevented high-concentration NONOate-induced mPTP opening. (6) Ascorbic acid (an inhibitor of S-nitrosylation) prevented the preventive effects of low-concentration NONOate on mPTP. We conclude that opening of mPTP by high-concentration NO is related to disulfide bonds formation and oxidizing effects of ONOO(-). In contrast, the inhibitory effect of physiological concentrations of NO on mPTP is related to S-nitrosylation.  相似文献   

5.
BACKGROUND: The over-production of superoxide (O(2)(-)) derived from NADPH oxidase (NOX) plays a central role in cardiovascular diseases. By contrast, nitric oxide (NO) and prostacyclin (PGI(2)) are vasculoprotective. The effect of the NO donor, NONOate and iloprost on O(2)(-) formation, p47(phox) and Rac(1) activation in human vascular smooth muscle cells (hVSMCs) was investigated. METHODS: hVSMCs were incubated with 10nM thromboxane A(2) analogue, U46619 for 16h, and then with apocynin (a NOX inhibitor), NONOate or iloprost for 1h and O(2)(-) measured spectrophometrically. The role of cyclic AMP and cyclic GMP was examined by co-incubation of drugs with protein kinase (PK) A and G inhibitors listed above. Rac(1) was studied using pull-down assays. RESULTS: NONOate and iloprost inhibited O(2)(-) formation, acutely, effects blocked by inhibition of PKG and PKA, respectively. Rac(1) and p47(phox) activation and translocation to the plasma membrane was completely inhibited by NONOate and iloprost, effects again reversed by co-incubation with PKG or PKA inhibitors. CONCLUSIONS: NO and PGI(2) block the acute activity of NOX in hVSMCs via the cGMP-PKG axis (for NO) and by the cAMP-PKA axis (for iloprost) through inhibition of Rac(1) and p47(phox) translocation. These findings have implications in the pathophysiology and treatment of CVD.  相似文献   

6.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

7.
Nitric oxide (NO) and peroxynitrite (ONOO) are said to destroy norepinephrine (NE). We studied the role of NE decomposition by NO donors and ONOO as they affect the contractile activity of NE in rat denuded thoracic aorta. First, we determined the relaxing effect of NO donors (SNAP, PROLI/NO, Sodium nitrite, SIN-1) and ONOO after precontraction by NE (1 microM). SNAP and SIN-1 (EC(50) 50-110 nM) were more active than PROLI/NO, Sodium nitrite or ONOO (EC(50) 19-30 microM). The relaxing effect of NO donors and ONOO were decreased by ODQ (10 microM), a guanylate cyclase inhibitor. Second, we compared the contractile activity of NE before and after preincubation with NO donors or ONOO in presence of ODQ. NE (1 microM) was incubated with NO donors or ONOO at the concentrations of 0.1 mM in both Krebs solution or phosphate buffer (pH 7.4; 0.1 M) for 10 minutes at 37 degrees C. NE evoked the aorta contraction in the same concentrations before and after preincubation with NO donors. In contrast, ONOO decreased effect of NE, EC(50) was measured at 4.3+/-0.3 nM and 13.4+/-1.6 nM, before and after preincubation of NE with ONOO respectively. Third, we measured the NE concentration using the HPLC method. We revealed that the concentration of NE after preincubation with NO donors was unaltered. However HPLC measurement revealed that NE concentration after preincubation with ONOO was reduced 2-3-fold. Therefore, under these experimental conditions ONOO, but not NO donors, was capable of destroying NE.  相似文献   

8.
The production of peroxynitrite (ONOO(-)) in the endothelium decreases NO bioavailability, decreases vasorelaxation and changes vascular tone. ONOO(-) can also influence the production of prostacyclin-another vasorelaxant. We used a nanotechnological approach (nanosensors) to elucidate the release of NO, O(2)(-), and ONOO(-) in endothelium and their effect on production of prostanoids. The basal ONOO(-) concentration near the endothelium (3-5 microm) varied from 1 to 50 nmol/L and maximal calcium ionophore stimulated ONOO(-), did not exceed 900 nmol/L. The highest ONOO(-) concentrations were produced in ischemia/reperfusion atherosclerosis, diabetes, aging and vary among different racial groups (higher in Blacks than in Whites). ONOO(-) decreased PGI(2) activity with IC(50) approximately 150 nmol/L for 8 min reaction time, but has no effect of short reaction time. Prostaglandin E(1) decreased NO, O(2)(-), and ONOO(-) by limiting Ca(2+) flux into endothelium, decreased edema and vasoconstriction during ischemia/reperfusion. In endothelium (HUVEC's) of Black's the ONOO(-) concentrations were high 750+/-50 nmol/L while the lowest concentrations of vasorelaxants were 275+/-25 nmol/L of NO, 150+/-15 pb/100 microg protein of 6-keto-PGF(1)(alpha) as compared to White's (420+/-30 and 470+/- nmol/L for ONOO(-) and NO respectively and 280+/-20 pg/100 mg protein for 6-keto-PGF(1)(alpha)).  相似文献   

9.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

10.
Virulent strains of Photobacterium damselae subsp. piscicida (Pdp) were grown in media with or without glucose supplementation (to enhance polysaccharide capsule formation) and the bactericidal action of nitric oxide (NO) and peroxynitrites was evaluated in a cell-free assay. Treatment with the NO-donor S-nitroso-acetyl-penicillamine (SNAP) induced a dose-and time-dependent decrease in Pdp survival. This effect was greater for strains grown without glucose supplementation (C forms) than for their counterparts grown with glucose supplementation (C(+) forms). Addition of superoxide anion (O2(-)) generating systems (Xanthine/Xanthine oxidase, glucose/glucose oxidase) to the culture media further enhanced the bactericidal effect of NO. A similar bactericidal effect, with the same pattern of sensitivity, was observed when C+ and C forms of the bacteria were treated with 3-morpholino-sydonimide hydrochloride (SIN-1), a compound which simultaneously generates NO and O2(-). Addition of superoxide dismutase (SOD) or SOD plus catalase (CAT) did not fully reverse the toxic action of SIN-1 and the bactericidal effect was similar for both C and C(+) forms suggesting that while NO alone is sufficient to cause damage in all strains of the pathogen tested, growth in glucose supplemented medium enhanced protection to reactive oxygen intermediates rather than NO.  相似文献   

11.
Activation of the NADPH oxidase-derived oxidant burst of polymorphonuclear leukocytes (PMNs) is of critical importance in inflammatory disease. PMN-derived superoxide (O(2)) can be scavenged by nitric oxide (NO( small middle dot)) with the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the effects and mechanisms by which NO( small middle dot) and ONOO(-) modulate the PMN oxidative burst. Therefore, we directly measured the dose-dependent effects of NO( small middle dot) and ONOO(-) on O(2) generation from human PMNs stimulated with phorbol 12-myristate 13-acetate using EPR spin trapping. Pretreatment with low physiological (microm) concentrations of NO( small middle dot) from NO( small middle dot) gas had no effect on PMN O(2) generation, whereas high levels (> or =50 microm) exerted inhibition. With ONOO(-) pretreatment, however, a biphasic modulation of O(2) generation was seen with stimulation by microm levels, but inhibition at higher levels. With the NO( small middle dot) donor NOR-1, which provides more sustained release of NO( small middle dot) persisting at the time of O(2) generation, a similar biphasic modulation of O(2) generation was seen, and this was inhibited by ONOO(-) scavengers. The enhancement of O(2) generation by low concentrations of ONOO(-) or NOR-1 was associated with activation of the ERK MAPKs and was blocked by their inhibition. Thus, low physiological levels of NO( small middle dot) present following PMN activation are converted to ONOO(-), which enhances O(2) generation through activation of the ERK MAPK pathway, whereas higher levels of NO( small middle dot) or ONOO(-) feed back and inhibit O(2) generation. This biphasic concentration-dependent regulation of the PMN oxidant burst by NO( small middle dot)-derived ONOO(-) may be of critical importance in regulating the process of inflammation.  相似文献   

12.
Peroxynitrite (ONOO(-)) is a potent nitrating and oxidizing agent that is formed by a rapid reaction of nitric oxide (NO) with superoxide anion (O(2)). It appears to be involved in the pathophysiology of many inflammatory and neurodegenerative diseases. It has recently been reported (Pfeiffer, S., and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285) that ONOO(-) generated at neutral pH from NO and O(2) (NO/O(2)) was substantially less efficient than preformed ONOO(-) at nitrating tyrosine. Here we re-evaluated tyrosine nitration by NO/O(2) with a shorter incubation period and a more sensitive electrochemical detection system. Appreciable amounts of nitrotyrosine were produced by ONOO(-) formed in situ (2.9 micrometer for 5 min; 10 nm/s) by NO/O(2) flux obtained from propylamine NONOate (CH(3)N[N(O)NO](-) (CH(2))(3)NH(2)(+)CH(3)) and xanthine oxidase using pterin as a substrate in phosphate buffer (pH 7.0) containing 0.1 mm l-tyrosine. The yield of nitrotyrosine by this NO/O(2) flux was approximately 70% of that produced by the same flux of preformed ONOO(-) (2.9 micrometer/5 min). When hypoxanthine was used as a substrate, tyrosine nitration by NO/O(2) was largely eliminated because of the inhibitory effect of uric acid produced during the oxidation of hypoxanthine. Tyrosine nitration caused by NO/O(2) was inhibited by the ONOO(-) scavenger ebselen and was enhanced 2-fold by NaHCO(3), as would be expected, because CO(2) promotes tyrosine nitration. The profile of nitrotyrosine and dityrosine formation produced by NO/O(2) flux (2.9 micrometer/5 min) was consistent with that produced by preformed ONOO(-). Tyrosine nitration predominated compared with dityrosine formation caused by a low nanomolar flux of ONOO(-) at physiological concentrations of free tyrosine (<0.5 mm). In conclusion, our results show that NO generated with O(2) nitrates tyrosine with a reactivity and efficacy similar to those of chemically synthesized ONOO(-), indicating that ONOO(-) can be a significant source of tyrosine nitration in physiological and pathological events in vivo.  相似文献   

13.
Lipopolysaccharide (LPS, a Gram-negative bacterium cell wall component) is a potent macrophage activator that inhibits macrophage proliferation and stimulates production of nitric oxide (NO) via NO synthase II (NOSII). We investigated whether NO mediates the LPS-stimulated cell cycle arrest in mouse bone marrow-derived macrophages (BMM). The addition of the NO donor DETA NONOate (200 microM) inhibited BMM proliferation by approx. 80%. However, despite NO being an antimitogen, LPS was as potent at inhibiting proliferation in BMM derived from NOSII-/- mice as from wild-type mice. Consistent with these findings, LPS-induced cell cycle arrest in normal BMM was not reversed by the addition of the NOSII inhibitor S-methylisothiourea. Moreover, in both normal and NOSII-/- BMM, LPS inhibited the expression of cyclin D1, a protein that is essential for proliferation in many cell types. Despite inhibiting proliferation DETA NONOate had no effect on cyclin D1 expression. Our data indicate that while both LPS and NO inhibit BMM proliferation, LPS inhibition of BMM proliferation can occur independently of NOSII induction.  相似文献   

14.
15.
Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO(-) ) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO(-) donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24 h (with exogenous activation of cGMP) revealed increased ONOO(-) levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO(-) and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity.  相似文献   

16.
Pendrin is a Cl(-)/HCO(3)(-) exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (N(G)-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ~33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.  相似文献   

17.
Hyperbaric oxygen (HBO), e.g. pure oxygen breathing at supra-atmospheric pressures, represents a well-suited model for investigating oxidative stress-induced DNA damage as well as protective mechanisms. While the induction of heme oxygenase-1 (HO-1) seems to be crucial for this protection against this DNA damage, the role of nitric oxide (NO) remains unclear. HO-1 expression is a major regulator of the inducible NO synthase (iNOS), and therefore we investigated the effect of the interaction between HBO, NO, and HO-1 on DNA damage. Prior to exposure to HBO (3 h at 3 bar ambient pressure) rats randomly received vehicle (HBO alone, 1 mL 0.9% saline, n=8), the NO donor molsidomine (SIN-10, 40 mg/kg, n=8) or the HO-1 blocker tin-mesopophyrin (Sn-MP, 50 micromol/kg, n=8). Additional groups received SIN-10 without exposure to HBO, i.e. breathing air under normobaric conditions for 3h (SIN-10 alone, 40 mg/kg, n=6), vehicle without HBO (negative controls, n=6), and ethylmethanesulfonate without HBO (EMS, 200 mg/kg) (positive controls n=4). Immediately after the 3 h HBO or air breathing period blood was analysed for DNA strand breaks (tail moment in the alkaline comet assay) and nitrite+nitrate (chemoluminescence). Whereas the tail moment was ten-fold higher after EMS than in the negative controls, there was no effect of HBO nor SIN-10 alone. Together with HBO, pretreatment with SIN-10 doubled the tail moment, and Sn-MP increased it by 50%. In contrast to Sn-MP or HBO alone, SIN-10 resulted in a five-fold increase of nitrite+nitrate concentrations. We conclude that both HO-1 blockade and excess NO release promote DNA damage during HBO exposure in vivo. The effect of HO-1 inhibition is probably independent of the regulatory function of HO-1 for iNOS.  相似文献   

18.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   

19.
Nitric oxide (NO) is thought to play an important role in the regulation of neonatal pulmonary vasculature. It has been suggested that neonates with pulmonary hypertension have a defective NO pathway. Therefore, we measured in 1-day-old piglets exposed to hypoxia (fraction of inspired O(2) = 0.10) for 3 or 14 days to induce pulmonary hypertension 1) the activity of NO synthase (NOS) via conversion of L-arginine to L-citrulline and the concentration of the NO precursor L-arginine in isolated pulmonary vessels, 2) the vasodilator response to the NO donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and the cGMP analog 8-bromo-cGMP in isolated perfused lungs, and 3) the production of cGMP in response to SIN-1 in isolated perfused lungs. After 3 days of exposure to hypoxia, endothelial NOS (eNOS) activity was unaffected, whereas, after 14 days of hypoxia, eNOS activity was decreased in the cytosolic fraction of pulmonary artery (P < 0.05) but not of pulmonary vein homogenates. Inducible NOS activity was decreased in the cytosolic fraction of pulmonary artery homogenates after both 3 (P < 0.05) and 14 (P < 0.05) days of hypoxia but was unchanged in pulmonary veins. Pulmonary artery levels of L-arginine were unaffected by hypoxic exposure. After 3 days of exposure to hypoxia, the reduction in the dilator response to SIN-1 (P < 0.05) coincided with a decrease in cGMP production (P < 0.005), suggesting that soluble guanylate cyclase activity may be altered. When the exposure was prolonged to 14 days, dilation to SIN-1 remained decreased (P < 0.05) and, although cGMP production normalized, the dilator response to 8-bromo-cGMP decreased (P < 0.05), suggesting that, after prolonged exposure to hypoxia, cGMP-dependent mechanisms may also be impaired. In conclusion, neonatal hypoxia-induced pulmonary hypertension is associated with multiple disruptions in the NO pathway.  相似文献   

20.
Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors reversed the normal depressor and sympathoinhibitory responses to stimulation of NTS A2a receptors into pressor and sympathoactivatory responses and attenuated the heart rate decreases; however, it did not change the increases in pre-ASNA. We conclude that NTS NO mechanisms differentially affect regional sympathetic outputs and differentially contribute to the pattern of regional sympathetic responses evoked by stimulation of NTS A2a receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号