首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary 1. In the rat, the LH-dependent ovarian progesterone rise mediates several actions of the primary surge of LH on the ovary. This experiment was aimed at elucidating the effects of the antiprogestagen RU486 on the LH-dependent decrease in both the serum concentrations and the ovarian content of inhibin.2. All rats in this experiment were treated with an antagonist of LHRH (1 mg/200 µl saline at 0800 h in proestrus) to supress the endogenous release of LH. One group of rats received 32 µg LH/250 µl saline at 1200 h in proestrus. Other group was given 4 mg RU486/200 µl oil at 0800 h in proestrus. The third group was injected with both RU486 and LH. Rats from the control group were injected with 250 µl saline and 200 µl oil. Animals were decapitated at 1700 h in proestrus and trunk blood and ovaries collected to determine the serum concentrations of LH, FSH, progesterone, 17ß-estradiol and inhibin as well as the ovarian content of inhibin.3. The ovulatory dose of LH in LHRHa-treated rats decreased both the serum concentrations and the ovarian content of inhibin and increased the serum concentrations of FSH. The administration of RU486 blocked the effect of LH on the serum concentrations of inhibin but not that on the ovarian content of inhibin.4. Since the antiprogestagen RU486 blocked the effect of LH on the serum concentrations of inhibin, we conclude that ovarian progesterone, besides mediating the effects of the primary LH surge on the ovulatory process and luteinization, participates in the LH-dependent drop in the serum concentrations of inhibin in proestrous afternoon.  相似文献   

2.
Administration of antiprogesterone RU486 (4 mg/day) from estrus through proestrus to cyclic rats blocked ovulation. Moreover, RU486 increased basal serum concentrations of LH, PRL, testosterone and estradiol, while it decreased basal serum concentration of FSH. Both unilateral ovariectomy and antiandrogen flutamide treatment, as well as an ovulatory injection of HCG in the proestrus afternoon partially reversed, the ovulatory blockade of RU486. These results indicate that both the decreased FSH concentration and the increased testosterone concentration, as well as the reduced ovulatory LH release are responsible for the anovulatory effects of RU486.  相似文献   

3.
The effect of p-chlorophenylalanine (PCPA: 300 mg/kg) on the rate of ovulation and plasma LH, FSH and prolactin secretion has been studied in rats at preovulatory periods (18th hour of diestrus) and post-ovulatory periods (9th hour of metaestrus). In both experimental groups, results showed that administration of PCPA caused an increase in both prolactin concentration and number of mature ovarian follicles (p less than 0.001). No changes were observed in FSH levels. LH concentration, however, decreased (p less than 0.001) and ovulation became totally inhibited. Rats treated at the 9th hour of metaestrus exhibited a marked luteinization as well as an increased number of corpus luteum in the ovaric tissue (p less than 0.001), whereas those treated at the 18th hour of diestrus underwent no luteinization and merely showed a greater number of mature ovarian follicles (p less than 0.001). PCPA, therefore, seems not to have a double effect on ovulation, LH, FSH, and prolactin secretion regardless of the pre or post-ovulatory periods. Changes observed in the ovaric tissue might be due to an increase in plasma prolactin concentration which appears earlier in the preovulatory than in the post-ovulatory treated animals. This difference may explain the double effect that has been attributed to the ovaric cycle and reproductive behavior.  相似文献   

4.
Ovulation (i.e., the release of mature oocytes from the ovary) requires spatially targeted follicle rupture at the apex. Both progesterone and prostaglandins play key roles in the ovulatory process. We have studied follicle rupture and ovulation in adult cycling rats treated with a progesterone receptor antagonist (RU486), an inhibitor of prostaglandin synthesis (indomethacin, IM), or both. All rats were treated with LHRH antagonist on the morning (0900 h) of proestrus to inhibit endogenous gonadotropins and with 10 microg of ovine LH (oLH) at 1700 h in proestrus to induce ovulation. Animals were treated from metestrus to proestrus with 2 mg/day of RU486 or vehicle (olive oil) and on the morning of proestrus (1200 h) with 1 mg of IM or vehicle (olive oil). Some rats treated with vehicle or RU486 were killed on the morning of proestrus to assess preovulatory follicle development. The remaining rats were killed on the morning of estrus to study follicle rupture and ovulation. In vehicle-treated rats, oLH induced ovulation in 98% of follicles. In IM-treated rats, spatial targeting of follicle rupture was disrupted. Most oocytes were released to the ovarian interstitium (50%) or to the periovarian space (39%), and a smaller percentage (11%) of oocytes remained trapped inside the luteinized follicle. RU486-treated rats showed, on the morning of estrus, unruptured luteinized follicles. Only occasionally (2.8%), the oocytes were released to the periovarian space. IM treatment induced follicle rupture in RU486-treated rats, and 25% of oocytes were released to the ovarian interstitium. However, the number of oocytes released to the periovarian space (i.e., ovulated) was not increased by IM treatment in rats lacking progesterone actions. Overall, these data indicate that RU486 and IM have opposite effects on follicle rupture and suggest that both progesterone and prostaglandins are necessary for the spatial targeting of follicle rupture at the apex.  相似文献   

5.
Since administration of the antiprogesterone RU486 to cyclic female rats at metestrus and diestrus results in increased serum levels of LH, estradiol, and testosterone at proestrus, we investigated whether RU486 affects follicular steroidogenesis. Female rats with a 4-day estrous cycle, induced experimentally by a single injection of bromocriptine on the morning of estrus, were given RU486 (2 mg) twice daily (0900 and 1700 h) on metestrus and diestrus. At proestrus the preovulatory follicles were isolated and incubated for 4 h in the absence and presence of LH. In the absence of LH, accumulation of estradiol, testosterone, and progesterone in the medium was not different for RU486-treated rats and oil-treated controls. In contrast, LH-stimulated estradiol, testosterone, and progesterone secretions were significantly lower in RU486-treated rats compared with controls. Addition of pregnenolone to the incubation medium resulted in a significantly lower increase of progesterone in follicles from RU486-treated rats compared with those from oil-treated controls. This suggests that 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity is decreased by administration of RU486 in vivo. Aromatase and 17 alpha-hydroxylase/C17-20 lyase activities were not affected: addition of substrate (androstenedione and progesterone respectively) did not affect differently the amount of product formed (estradiol and testosterone) in RU486- and oil-treated rats. However, LH-stimulated pregnenolone secretion was lower in follicles from RU486-treated rats compared with follicles from oil-treated controls, suggesting that either cholesterol side-chain cleavage activity or LH responsiveness is decreased. At proestrus the preovulatory follicles from RU486- and oil-treated rats were not morphologically different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The stimulatory effect of progesterone on the release of the primary surges of serum LH and FSH is well characterized. Less is known about the relationship of progesterone to the secondary FSH surge. We used the antiprogesterone, RU486, to block the action of progesterone and studied the effects on the primary surges of LH and FSH, and especially on the secondary surge of FSH. Proestrous rats were treated with RU486 at 1,200 h. Rats were killed on proestrus and estrus, and serum levels of LH, FSH, and inhibin were measured. In all RU486-treated rats, the primary surges of LH and FSH were significantly attenuated, and the secondary FSH surge was completely abolished, despite a drop in inhibin levels following the primary surges. A high replacement dose of progesterone, delivered immediately after RU486 treatment, did not restore the primary surges of LH and FSH, or the secondary surge of FSH. These data suggest that other factors in addition to a drop in inhibin are responsible for producing the secondary FSH surge.  相似文献   

7.
The effects of ZK 191703 (ZK), a pure antiestrogen, on ovulation, follicle development and peripheral hormone levels were investigated in rats with 4-day estrus cycle and gonadotropin-primed immature rats in comparison to tamoxifen (TAM)-treatment. In adult rats, a single s.c. injection of ZK (5 mg/kg) or TAM (5 mg/kg) at an early stage of the estrus cycle (diestrus 9:00) inhibited ovulation, and was associated with suppression of the surge of preovulatory LH, FSH and progesterone. In rats treated with ZK or TAM at a late stage of the estrus cycle (proestrus 9:00), no inhibitory effects on ovulation, the gonadotropin and progesterone surge were detected. ZK treatment at diestrus 9:00, in contrast to TAM, increased the baseline LH level. When immature rats were treated with antiestrogens in the earlier stage of follicular development, 6 and 30 h but not 48 h or later after injection of gonadotropin (PMSG), ovulation was attenuated, associated with a lowered progesterone level. Unruptured preovulatory follicles were found in most of the ovaries from anovulatory animals treated with ZK or TAM. Antiestrogens, ZK and TAM administered at an early phase of the estrus cycle delay the follicular development functionally and inhibit ovulation in rats and suppression of the preovulatory progesterone surge.  相似文献   

8.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

9.
Summary 1. Intact or ovariectomized (OVX) cyclic rats injected or not with RU486 (4 mg/0.2 ml oil) from proestrus onwards were bled at 0800 and 1800h on proestrus, estrus and metestrus. Additional RU486-treated rats were injected with: LHRH antagonist (LHRHa), estradiol benzoate (EB) or bovine follicular fluid (bFF) and sacrified at 1800 h in estrous afternoon. LH and FSH serum levels were determined by RIA.2. RU486-treated intact or OVX rats had decreased preovulatory surges of LH and FSH, abolished secondary secretion of FSH and hypersecretion of FSH in estrous afternoon. The latter was decreased by LHRHa and abolished by EB or bFF. In contrast, EB induced an hypersecretion of LH in RU486-treated rats at 1800h in estrus.3. It can be concluded that in the absence of the proestrous progesterone actions, the absence of the inhibitory effect of the ovary in estrus evoked a LHRH independent secretion of FSH.  相似文献   

10.
These experiments explored the mechanism underlying FSH hypersecretion on estrous afternoon in rats injected with RU486 (RU) on proestrus. Four-day cyclic rats were injected with RU at 12:00 h on proestrus (1 or 4 mg/0.2 ml oil; s.c.), and its effects on LH and FSH secretion at 18:30 h on estrus were compared with those of antiprogestagens ZK299 (ZK) (1 or 4 mg/0.2 ml oil; s.c.) and Org31806 (OR) (2 or 8 mg/0.2 ml oil; s.c.). Additionally, rats treated with RU or nembutal (PB) (60 mg/kg; i.p. at 13:00 h on proestrus) were injected with an LHRH antagonist (LHRHa) at 10:00 h on estrus (1 mg/0.2 ml saline; s.c.) or progesterone (P) (7.7, 15.5 or 30.9 mg/0.2 ml oil; s.c.) on proestrus at 10:00 h in RU-injected rats and at 14:00 h in PB-injected rats. Animals were killed by decapitation at 18:30 h on estrus and serum LH and FSH concentrations were determined. Rats treated with 1 or 4 mg of RU or Org or 4 mg of ZK recorded increased serum FSH on estrous afternoon, while 1 mg ZK had no effect. PB increased mainly serum LH levels and, to a lesser extent, FSH levels. P decreased serum FSH concentrations in both RU- and PB-injected rats. LHRHa reversed the effects of PB on FSH secretions, but reduced FSH hypersecretion induced by RU only. These results are interpreted to mean that, in the absence of proestrous afternoon P-inhibitory action of the neural stimulus controlling LHRH release, FSH secretion on estrous afternoon involves two components: one is LHRH dependent while, in contrast to LH secretion, the other is LHRH independent, and only expressed in a low estrogen background.  相似文献   

11.
Ovarian steroid contents and serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin were measured during the days after first ovulation in rats unilaterally ovariectomized in late prepuberty. In addition, follicle counts were made at second estrus and second metestrus. During the cycle following first ovulation, ovarian estradiol contents in unilaterally ovariectomized (ULO) rats were significantly increased as compared to intact rats on the day of metestrus, on diestrus 1 and on second estrus. Ovarian progesterone was significantly increased on the days of metestrus, on diestrus 1, second proestrus and second estrus, but no differences were seen in ovarian androgen contents. After ULO there was an indication of an augmented FSH surge at the first and the second ovulation. Follicle counts revealed that the total number of healthy as well as of atretic antral follicles on the day of second estrus was significantly increased after ULO, due to increased numbers of the smallest antral follicles. At second metestrus the number of larger antral follicles (350-500 micron 3) and the total number of healthy antral follicles was higher after ULO. It is concluded that the compensatory process after ULO involved increased recruitment of small antral follicles. Activities in the remaining ovary were not simply doubled but a new hormonal balance was established.  相似文献   

12.
The effects of androgen pretreatment on follicle-stimulating hormone (FSH)-stimulated luteinizing hormone (LH) receptor induction in ovarian granulosa cells was examined. Immature female rats were treated with various doses (0.1-5 mg/rat) of testosterone (T), 5 alpha-dihydrotestosterone (DHT), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-diol), or 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol). Subsequent follicular development was stimulated by treatment with ovine FSH. LH receptor induction in granulosa cells and ovulatory responses to 10 IU human chorionic gonadotropin (hCG) were examined. Since LH receptor induction requires the synergistic action of both FSH and estradiol, the effects of the androgen pretreatment on FSH-stimulated estradiol production were also examined. Dihydrotestosterone treatment at doses greater than 1 mg inhibited LH receptor induction by approximately 70%, which resulted in absent ovulatory responses. Treatment with 1 mg or more of T or 3 alpha-diol had no effect on LH receptor induction, yet the hCG-stimulated ovulation rate was reduced to 40% of that seen in vehicle-treated controls. 3 beta-Diol, at a dose of 1 mg/rat, did not affect LH receptor induction but did reduce hCG-stimulated ovulation responses. No significant effects of androgen treatment on ovarian or uterine weight or FSH-stimulated estradiol production were observed. These results suggest that androgens can act at multiple sites to inhibit ovarian follicular development and function. In addition these studies demonstrate that, although LH receptor induction is necessary, it may not be a sufficient condition to ensure ovulation of ovarian follicles.  相似文献   

13.
The aim of the present study was to determine the physiological role of endogenous progesterone in the regulation of ovarian dynamics, gonadotropin and progesterone secretion during the early luteal phase in the goat. Cycling Shiba goats received subcutaneously a vehicle (control group, n=5) or 50 mg of RU486 (RU486 group, n=4) daily from 1 to 7 days after ovulation (day 0) determined by transrectal ultrasonography. Ovarian dynamics were monitored by the ultrasonography and blood samples were collected daily until the subsequent ovulation for analysis of progesterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion. Blood samples were also collected at 10 min intervals for 6 h on day 3 and day 7 for the analysis of pulsatile patterns of LH and FSH. The LH pulse frequency was significantly (P<0.05) higher in the RU486 group than in the control group on day 7 (4.8+/-1.1 pulses/6 h versus 1.2+/-0.4 pulses/6 h). The shape of the FSH pulses was unclear on day 3 and day 7 in both groups and the overall means of FSH concentration for 6 h on day 3 and day 7 were not significantly different between the RU486 and the control groups. The pattern of daily FSH concentrations showed a wave-like fluctuation in both groups. There was no significant difference in the inter-peak intervals of the wave-like pattern of daily FSH secretion between the RU486 and the control groups (4.1+/-0.6 days versus 4.5+/-0.6 days). The maximum diameter of the largest follicle that grew from day 1 to day 7 in the RU486 group tended to be greater than that in control goats (6.4+/-0.8 mm versus 5.0+/-0.8 mm, P=0.050), whereas no significant difference was detected in the size of the corpus luteum and progesterone concentrations between the control and RU486 groups on almost all days during the treatment period. These results indicate that the rise of the progesterone concentration suppresses the pulsatile LH secretion and follicular growth, whereas progesterone has no physiological role in the regulation of FSH secretion and luteal function during the early luteal phase of the estrous cycle in goats.  相似文献   

14.
Recent work from our laboratory suggests that a complex interaction exists between ovarian and adrenal steroids in the regulation of preovulatory gonadotropin secretion. Ovarian estradiol serves to set the neutral trigger for the preovulatory gonadotropin surge, while progesterone from both the adrenal and the ovary serves to (1) initiate, (2) synchronize, (3) potentiate and (4) limit the preovulatory LH surge to a single day. Administration of RU486 or the progesterone synthesis inhibitor, trilostane, on proestrous morning attenuated the preovulatory LH surge. Adrenal progesterone appears to play a role in potentiating the LH surge since RU486 still effectively decreased the LH surge even in animals ovariectomized at 0800 h on proestrus. The administration of ACTH to estrogen-primed ovariectomized (ovx) immature rats caused a LH and FSH surge 6 h later, demonstrating that upon proper stimulation, the adrenal can induce gonadotropin surges. The effect was specific for ACTH, required estrogen priming, and was blocked by adrenalectomy or RU486, but not by ovariectomy. Certain corticosteroids, most notably deoxycorticosterone and triamcinolone acetonide, were found to possess "progestin-like" activity in the induction of LH and FSH surges in estrogen-primed ovx rats. In contrast, corticosterone and dexamethasone caused a preferential release of FSH, but not LH. Progesterone-induced surges of LH and FSH appear to require an intact N-methyl-D-aspartate (NMDA) neurotransmission line, since administration of the NMDA receptor antagonist, MK801, blocked the ability of progesterone to induce LH and FSH surges. Similarly, NMDA neurotransmission appears to be a critical component in the expression of the preovulatory gonadotropin surge since administration of MK801 during the critical period significantly diminished the LH and PRL surge in the cycling adult rat. FSH levels were lowered by MK801 treatment, but the effect was not statistically significant. The progesterone-induced gonadotropin surge appears to also involve mediation through NPY and catecholamine systems. Immediately preceding the onset of the LH and FSH surge in progesterone-treated estrogen-primed ovx. rats, there was a significant elevation of MBH and POA GnRH and NPY levels, which was followed by a significant fall at the onset of the LH surge. The effect of progesterone on inducing LH and FSH surges also appears to involve alpha 1 and alpha 2 adrenergic neuron activation since prazosin and yohimbine (alpha 1 and 2 blockers, respectively) but not propranolol (a beta-blocker) abolished the ability of progesterone to induce LH and FSH surges. Progesterone also caused a dose-dependent decrease in occupied nuclear estradiol receptors in the pituitary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Sexual behavior, follicular development and ovulation, and concentrations of circulating gonadotropins during the estrous cycle were studied during the summer in 7 jennies. Mean behavioral estrous length was 6.4 +/- 0.6 days (mean +/- SEM, n=19; 5.6 +/- 0.5 days preovulatory and 0.8 +/- 0.2 days post-ovulatory). Mean diestrous length was 19.3 +/- 0.6 days (n=14). Females in estrus typically showed posturing, mouth clapping, clitoral winking, urinating and tail raising. Mouth clapping began approximately one day sooner and lasted approximately one day longer than winking and tail raising, so that the total duration of clapping was significantly greater than for the other two signs. Follicular changes and concentrations of gonadotropins were determined for 14 estrous cycles (2 per jenny). The follicular end points [diameter of the largest follicle and number of large (>25 mm), medium (20-24 mm), and small follicles (<20 mm)] showed a significant day effect. The diameter of the largest follicle and the number of large follicles began to increase significantly 7 days prior to ovulation with a maximum value the day before ovulation. Medium follicles reached a maximum number 4 days prior to ovulation, and small follicles decreased significantly prior to ovulation. After ovulation, all follicular end points, except the number of small follicles, remained low for the next 12 days. Mean values of FSH were low during estrus and high during diestrus with 2 significant peaks, one 3 days and one 9 days after ovulation. In contrast, mean levels of LH were low during diestrus and high during estrus with a maximum value the day after ovulation. The LH profile showed a more prolonged gradual increase prior to ovulation, than that which has been reported for ponies and horses.  相似文献   

16.
Estradiol secreted by the maturing follicle is the primary trigger for the surge of gonadotropins leading to ovulation. Progesterone has stimulatory or inhibitory actions on this estrogen-induced gonadotropin surge depending upon the time and dose of administration. The administration of progesterone to immature ovariectomized rats primed with a low dose of estradiol induced a well-defined LH surge and prolonged FSH release, a pattern similar to the proestrus surge of gonadotropins. A physiological role of progesterone is indicated in the normal ovulatory process because a single injection of the progesterone antagonist RU 486 on the day of proestrus in the adult cycling rat and on the day of the gonadotropin surge in the pregnant mare's serum gonadotropin stimulated immature rat resulted in an attenuated gonadotropin surge and reduced the number of ova per ovulating rat. Progesterone administration brought about a rapid LHRH release and an decrease in nuclear accumulation of estrogen receptors in the anterior pituitary but not the hypothalamus. The progesterone effect was demonstrated in vitro in the uterus and anterior pituitary and appears to be confined to occupied estradiol nuclear receptors. In in vivo experiments the progesterone effect on estradiol nuclear receptors appeared to be of approximately 2-h duration, which coincided with the time period of progesterone nuclear receptor accumulation after a single injection of progesterone. During the period of progesterone effects on nuclear estrogen receptors, the ability of estrogens to induce progesterone receptors was impaired. Based on the above results, a model is proposed for the stimulatory and inhibitory effects of progesterone on gonadotropin secretion.  相似文献   

17.
LH and FSH release during the afternoon of diestrus 1 on the one hand, and the rate of follicular growth on the morning of diestrus 1 or diestrus 2, on the other hand, were studied in 4-day cyclic female rats after injection of estradiol benzoate (10 microgram, s.c.) on the morning of estrus. LH and FSH release was observed between 15.00 and 19.00 h during diestrus 1, but did not occur after an injection of pentobarbital (30 mg/kg, i.p.) in diestrus 1 at 13.30 h. No luteinization resulted from an injection of estrogen. Slowed follicular growth was observed on the morning of either diestrus 1 or diestrus 2. These results suggest the existence of a "critical period" for LH and FSH release in diestrus 1 during the afternoon. They indicate that the ovarian response to the endogenous release of gonadotropins is dependent upon the state of development of the ovarian follicles.  相似文献   

18.
Gonadotropin-primed immature rats (GPIR) constitute a widely used model for the study of ovulation. Although the equivalence between the ovulatory process in immature and adult rats is generally assumed, the morphological and functional characteristics of ovulation in immature rats have been scarcely considered. We describe herein the morphological aspects of the ovulatory process in GPIR and their response to classical ovulation inhibitors, such as the inhibitor of prostaglandin (PG) synthesis indomethacin (INDO) and a progesterone (P) receptor (PR) antagonist (RU486). Immature Wistar rats were primed with equine chorionic gonadotropin (eCG) at 21, 23 or 25 days of age, injected with human chorionic gonadotropin (hCG) 48 h later, and sacrificed 16 h after hCG treatment, to assess follicle rupture and ovulation. Surprisingly, GPIR showed age-related ovulatory defects close similar to those in adult rats lacking P and PG actions. Rats primed with eCG at 21 or 23 days of age showed abnormally ruptured corpora lutea in which the cumulus-oocyte complex (COC) was trapped or had been released to the ovarian interstitum, invading the ovarian stroma and blood and lymphatic vessels. Supplementation of immature rats with exogenous P and/or PG of the E series did not significantly inhibit abnormal follicle rupture. Otherwise, ovulatory defects were practically absent in rats primed with eCG at 25 days of age. GPIR treated with INDO showed the same ovulatory alterations than vehicle-treated ones, although affecting to a higher proportion of follicles. Blocking P actions with RU486 increased the number of COC trapped inside corpora lutea and decreased ovulation. The presence of ovulatory defects in GPIR, suggests that the capacity of the immature ovary to undergo the coordinate changes leading to effective ovulation is not fully established in Wistar rats primed with eCG before 25 days of age.  相似文献   

19.
The characteristics of ovulatory follicular waves were studied for spontaneous waves and waves induced during the next estrous cycle by ovarian follicle ablations and administration of PGF2alpha 10 days after ovulation in 21 mares. In the induced group, both the days of the FSH surge and day of deviation were more synchronized, LH concentrations were greater before and after deviation, estradiol concentrations were greater after deviation, and the ovulatory follicle grew at a faster rate (3.4+/-0.2 compared with 2.7+/-0.1 mm/day). The frequency of two dominant follicles/wave was not different between induced waves (7 of 21) and spontaneous waves (9 of 21), but both dominant follicles ovulated more frequently in induced waves (6 of 7 waves compared with 0 of 9).  相似文献   

20.
The objective of this study was to characterize follicular development, onset of oestrus and preovulatory LH surge, and in vivo embryo yields of sheep superovulated after treatment with a single dose of 1.5mg of GnRH antagonist (GnRHa). At first FSH dose, ewes treated with GnRH antagonist (n=12) showed a higher number of gonadotrophin-responsive follicles, 2-3mm, than control ewes (n=9, 13.5+/-3.8 versus 5.3+/-0.3, P<0.05). Administration of FSH increased the number of >or=4mm follicles at sponge removal in both groups (19.3+/-3.8, P<0.0005 for treated ewes and 12.7+/-5.4, P<0.01 for controls). Thereafter, a 25% of the GnRHa-treated sheep did not show oestrous behaviour whilst none control sheep failed (P=0.06). The preovulatory LH surge was detected in an 88.9% of control ewes and 66.7% of GnRHa-treated sheep. A 77.8% of control females showed ovulation with a mean of 9.6+/-0.9 CL and 3.3+/-0.7 viable embryos, while ewes treated with GnRHa and showing an LH surge exhibited a bimodal distribution of response; 50% showed no ovulatory response and 50% superovulated with a mean of 12.2+/-1.1 CL and 7.3+/-1.1 viable embryos. In conclusion, a single dose of GnRHa enhances the number of gonadotrophin-dependent follicles able to grow to preovulatory sizes in response to an FSH supply. However, LH secretion may be altered in some females, which can affect the preovulatory LH surge and/or can weak the terminal maturation of ovulatory follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号