首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

2.
The aim of this study was to examine frequencies and haplotypic associations of HLA class II alleles in autochthonous population of Gorski kotar (Croatia). HLA-DRB1, -DQA1 and -DQB1 alleles were determined by DNA based PCR typing in 63 unrelated inhabitants from Gorski kotar whose parents and ancestors were born and lived in tested area for at least over four generations. A total of 13 HLA-DRB1, 12 DQA1 and 14 DQB1 alleles were identified. The most frequent HLA class II genes in Gorski kotar population are: HLA-DRB1*13 (af = 0.150), -DRB1*03 (af = 0.142), -DRB1*07 (af = 0.119), and -DRB1*11 (af = 0.119), HLA-DQA1*0501 (af = 0.278), -DQA1*0102 (af = 0.183), -DQA1*0201 (af = 0.127) and HLA-DQB1*0301 (af = 0.157), -DQB1*0201 (af = 0.139), -DQB1*0501 (af = 0.111). We have identified 24 HLA class II three-locus haplotypes. The most common haplotypes in Gorski kotar population are DRB1*03-DQA* 0501-DQB1*0201 (0.120), DRB1*11-DQA1*0501-DQB1*0301 (0.111) and DRB1*07-DQA1*0201-DQB1*0202 (0.094). The allelic frequencies and populations distance dendrogram revealed the closest relationships of Gorski kotar population with Slovenians, Germans, Hungarians and general Croatian population, which is the result of turbulent migrations within this microregion during history.  相似文献   

3.
BACKGROUND: It has been reported that HLA class II haplotypes DRB1*0405-DQA1*0303-DQB1*0401 and DRB1*0901-DQA1*0302-DQB1*0303 are major susceptibility haplotypes for type 1 diabetes mellitus (DM) in Japanese population. However, little has been reported on the susceptibility HLA class II haplotypes in Japanese patients with autoimmune polyglandular syndrome type II and type III (APS III). PATIENTS AND METHODS: HLA class II haplotypes of DRB1-DQA1-DQB1 in 31 patients with APS III, 14 patients with Hashimoto's thyroiditis alone, and 15 patients with Graves' disease alone were examined in Japanese population. APS III patients were divided into three groups (A, B, and C) depending on the combination of autoimmune endocrine diseases. RESULTS: In 13 APS III patients with both Hashimoto's thyroiditis and type 1 DM (group A), the haplotype frequencies of the HLA DRB1*0802-DQA1*0401-DQB1*0402 and DRB1*0901-DQA1*0302-DQB1*0303 were significantly higher than in the controls. In patients with Hashimoto's thyroiditis alone, the haplotype frequency of DRB1*0901-DQA1*0302-DQB1*0303 was significantly higher than in controls, whereas the frequency of DRB1*0802-DQA1*0401-DQB1*0402 did not differ significantly from those in the controls. In 11 APS III patients with both Graves' disease and type 1 DM (group B), the haplotype frequencies of HLA DRB1*0405-DQA1*0303-DQB1*0401 and DRB1*0802-DQA1*0301-DQB1*0302 were significantly higher than in controls. In patients with Graves' disease alone, the haplotype frequency of DRB1*0803-DQA1*0103-DQB1*0601 were significantly higher than those in controls, suggesting that the susceptibility haplotypes for group B APS III differed from those for Graves' disease alone. In 7 APS III patients with both autoimmune thyroid diseases and pituitary disorders (group C), the haplotype frequency of HLA DRB1*0405-DQA1*0303-DQB1*0401 was significantly higher than in controls. CONCLUSIONS: Susceptible HLA class II haplotypes of DRB1-DQA1-DQB1 for APS III differ between the Japanese and Caucasian populations. More interestingly, the susceptible HLA class II haplotypes differ among the three types of Japanese APS III and are not merely a combination of susceptibility haplotypes of each endocrine disease.  相似文献   

4.
Insulin-dependent diabetes mellitus (IDDM) HLA class II DRB1-DQA1-DQB1 data from four populations (Norwegian, Sardinian, Mexican American, and Taiwanese) have been analyzed to detect the amino acids involved in the disease process. The combination of sites DRB1#67 and 86; DQA1#47; and DQB1#9, 26, 57, and 70 predicts the IDDM component in these four populations, when the results and criteria of the haplotype method for amino acids, developed in the companion paper in this issue of the Journal, are used. The following sites, either individually, or in various combinations, previously have been suggested as IDDM components: DRB1#57, 70, 71, and 86; DQA1#52; and DQB1#13, 45, and 57 (DQB1#13 and 45 correlates 100% with DQB1#9 and 26). We propose that DQA1#47 is a better predictor of IDDM than is the previously suggested DQA1#52, and we add DRB1#67 and DQB1#70 to the HLA DR-DQ IDDM amino acids. We do not claim to have identified all HLA DR-DQ amino acids-or highly correlated sites-involved in IDDM. The frequencies and predisposing/protective effects of the haplotypes defined by these seven sites have been compared, and the effects on IDDM are consistent across the populations. The strongest susceptible effects came from haplotypes DRB1 *0301/DQA1 *0501/ DQB1*0201 and DRB1*0401-5-7-8/DQA1*0301/ DQB1*0302. The number of strong protective haplotypes observed was larger than the number of susceptible ones; some of the predisposing haplotypes were present in only one or two populations. Although the sites under consideration do not necessarily have a functional involvement in IDDM, they should be highly associated with such sites and should prove to be useful in risk assessment.  相似文献   

5.
Genetic control of immune reactions has a major role in the development of rheumatic heart disease (RHD) and differs between patients with rheumatic fever (RF). Some authors think the risk of acquiring RHD is associated with the HLA class II DR and DQ loci, but other views exist, due to the various HLA-typing methods and ways of grouping cases. Our goal was to determine the relations between HLA class II alleles and risk of or protection from RF in patients with relatively homogeneous clinical manifestations. A total of 70 RF patients under the age of 18 years were surveyed in Latvia. HLA genotyping of DRB1*01 to DRB1*18 and DQB1*0201-202, *0301-305, *0401-402, *0501-504, and *0601-608 was performed using polymerase chain reaction sequence-specific primers. Data for a control group of 100 healthy individuals typed for HLA by the same method were available from the databank of the Immunology Institute of Latvia. Of the RF patients, 47 had RHD and 8 had Sydenham's chorea. We concluded that HLA class II DRB1*07-DQB1*0401-2 and DRB1*07-DQB1*0302 could be the risk alleles and HLA class II DRB1*06 and DQB1*0602-8, the protective ones. Patients with mitral valve regurgitation more often had DRB1*07 and DQB1*0401-2, and patients with multivalvular lesions more often had DRB1*07 and DQB1*0302. In Sydenham's chorea patients, the DQB1*0401-2 allele was more frequent. Genotyping control showed a high risk of RF and RHD in patients with DRB1*01-DQB1*0301-DRB1*07-DQB1*0302 and DRB1*15-DQB1*0302-DRB1*07-DQB1*0303.  相似文献   

6.
The HLA class II alleles (DRB1, DRB3, DRB5, DQA1, and DQB1) and haplotypic associations were studied in the population of the island of Krk using the PCR-SSOP method and the 12th International Histocompatibility Workshop primers and probes. Allele and haplotypic frequencies were compared with the general Croatian population. Significant differences were observed between the population of the island of Krk and Croatians for: a) three broad specificities at DRB1 locus (DRB1*01, *15, and *07), b) one allele at DRB3 locus (DRB3*0301), c) one allele at DQA1 locus (DQA1*0201), d) one allele at DQB1 locus (DQB1*0303). Four unusual haplotypic associations, which have not yet been described in the Croatian population, DRB1*1301-DQA1*0103-DQB1*0607, DRB1*1302-DQA1*0102-DQB1*0605, DRB1*1305-DQA1*0102-DQB1*0605 and DRB1*1305-DQA1*0103-DQB1*0603 were observed in the population from the island of Krk.  相似文献   

7.
The HLA system is being paid more and more attention because it is very significant in polymorphous immunological reactions. Several studies have suggested that genetic susceptibility to rheumatic fever (RF) and rheumatic heart disease (RHD) is linked to HLA class II alleles. We hypothesized that HLA class II associations within RHD may be more consistent if analysed amongst patients with a relatively homogeneous clinical outcome. A total of 70 RF patients under the age of 18 years were surveyed and analysed in Latvia. HLA genotyping of DQA1, DQB1 and DRB1 was performed using PCR with amplification with sequence-specific primers. We also used results from a previous study of DQB1 and DRB1 genotyping. In the RF patients, HLA class II DQA1*0401 was found more frequently compared to DQA1*0102. In the RF homogeneous patient groups, DQA1*0402 has the highest odds ratio. This is also the case in the multivalvular lesion (MVL) group, together with DQA1*0501 and DQA1*0301. In the chorea minor patients, DQA1*0201 was often found. Significant HLA DQA1 protective genotypes were not detected, although DQA1 genotypes *0103/*0201 and *0301/*0501 were found significantly and frequently. In the distribution of HLA DRB1/DQA1 genotypes, *07/*0201 and *01/*0501 were frequently detected; these also occurred significantly often in the MVL group. The genotype *07/*0201 was frequently found in Sydenhamn's chorea patients that had also acquired RHD, but DRB1*04/DQA1*0401 was often apparent in RF patients without RHD. In the distribution of HLA DQA1/DQB1 genotypes, both in RF patients and in the homogeneous patient groups, the least frequent were *0102/*0602-8. The genotype DQA1*0501 with the DQB1 risk allele *0301 was often found in the MVL group. The genotype *0301/*0401-2 was frequently found in the RF and Sydenhamn's chorea patient groups. The haplotype *07-*0201-*0302 was frequently found in RF and homogeneous patient groups, including the MVL group. In addition, haplotypes *04-*0401-*0301 and *04-*0301-*0401-2 were frequent amongst patients with Sydenhamn's chorea. The protective alleles DQA1*0102 and DQB1*0602-8 in the haplotype DRB1*15 were less frequently found in RF patients. The results of the present study support our hypothesis and indicate that certain HLA class II haplotypes are associated with risk for or protection against RHD and that these associations are more evident in patients in clinically homogeneous groups.  相似文献   

8.
The DRB1, DRB3, DRB5, DQA1 and DQB1 allele polymorphisms were analysed in 3 western and 3 eastern villages of the island of Hvar using PCR-SSOP method and 12th International Workshop primers and probes. Three DQB1 alleles (*0304, *0305, *0607) detected in the population of the island of Hvar (HP) have not yet been observed in general Croatian population (GCP). Significant differences were observed between two regions of Hvar for: a) DRB1*0701 allele (p < 0.001), b) DQA1*0201 allele (p < 0.01), and c) DRB1*0101-DQA1*0101-DQB1*0501 haplotypic association (p < 0.05). Two unusual haplotypic associations, which have not yet been described in general Croatian population (GCP), DRB1*0101-DQA1*0102-DQB1*0501 and DRB1*1501-DQA1 *0102-DQB1*0604 were observed in the population from the island of Hvar (HP). Measures of genetic kinship and genetic distances revealed isolation and clusterization which coincides with the known ethnohistorical, as well as biological and biocultural data obtained from a series of previous investigations. The five studied village subpopulations formed two clusters (East-West) to which the far eastern village (with the highest rii of 0.0407) joined later, thus indicating possible impact of historical immigrations from the mainland.  相似文献   

9.
We have found that the low immune response to streptococcal cell wall Ag (SCW) was inherited as a dominant trait and was linked to HLA, as deduced from family analysis. In the present report, HLA class II alleles of healthy donors were determined by serology and DNA typing to identify the HLA alleles controlling low or high immune responses to SCW. HLA-DR2-DQA1*0102-DQB1*0602(DQw6)-Dw2 haplotype or HLA-DR2-DQA1*0103-DQB1*0601(DQw6)-DW12 haplotype was increased in frequency in the low responders and the frequency of HLA-DR4-DRw53-DQA1*0301-DQB1*0401(DQw4)-Dw15 haplotype or HLA-DR9-DRw53-DQA1*0301-DQB1*0303(DQw3)-Dw23 haplotype was increased in the high responders to SCW. Homozygotes of either DQA1*0102 or DQA1*0103 exhibited a low responsiveness to SCW and those of DQA1*0301 were high responders. The heterozygotes of DQA1*0102 or 0103 and DQA1*0301 showed a low response to SCW, thereby confirming that the HLA-linked gene controls the low response to SCW, as a dominant trait. Using mouse L cell transfectants expressing a single class II molecule as the APC, we found that DQw6(DQA1*0103 DQB1*0601) from the low responder haplotype (DR2-DQA1*0103-DQB1*0601(DQw6)-Dw12) activated SCW-specific T cell lines whereas DQw4(DQA1*0301 DQB1*0401) from the high responder haplotype (DR4-DRw53-DQA1*0301-DQB1*0401(DQw4)-Dw15) did not activate T cell lines specific to SCW. However, DR4 and DR2 presented SCW to CD4+ T cells in both the high and low responders to SCW, hence the DR molecule even from the low responder haplotype functions as an restriction molecule in the low responders. Putative mechanisms linked to the association between the existence of DQ-restricted CD4+ T cells specific to SCW, and low responsiveness to SCW are discussed.  相似文献   

10.
Genetic and immunologic aspects of type 1 diabetes mellitus   总被引:1,自引:0,他引:1  
Prediction of type 1 diabetes mellitus (IDDM) and its identification in preclinical period is one of the central problems in modern medicine. They are based comprehensive genetic, immunologic and metabolic evaluations. We observed four hundred seven first-degree relatives of patients with IDDM (240 families in which one of the children or one of the parents had IDDM) have been included in the study. The study of HLA-DQA1, HLA-DQB1 polymorphic alleles and DRB1 genes and their combinations. The genetic study included searching HLA loci (HLA-DQA1, HLA-DQB1 polymorphic alleles and DRB1 genes) loci. To evaluate the genetic risk two approaches we used: first--carrying predisposing HLA-DQ alleles and DRB1-genes and it's combination (mainly associated in Russian population was DRB1*04-DQB1*0302, DRB1*04-DQA1*0301, DQA1*0301-DQB1*0302, DQA1*0301-DQB1*0302 and four susceptible alleles in A- and B- chains (Asp 57-, Arg 52+)) and second--IBD (identity by descent), in Russian population HLA-identical for 2 haplotypes sibs had risk of development of IDDM of 18%, for 1 haplotype--3%, for 0 haplotype-0.9%. The antibodies (ICA, IAA) prevalence rate has not depended on availability of predisposing HLA-DQ alleles and DRB1-genes and haploidentity of normal sibs and sibs with IDDM. However, GADA prevalence rate in groups having high predisposed alleles has been noticed as significantly higher (28.6%) comparing with 7.7% in groups that had no predisposing alleles (p < 0.05). The comparison of antibodies prevalence rate to sibs HLA-identity has shown the significant increase or GADA prevalence rate in group of siblings identical for one haplotype comparing with non-identical sibs (27.3% and 0% respectively, p < 0.001).  相似文献   

11.
We have investigated the DNA polymorphism for the DQA1 promoter region (QAP) and HLA-class II DRB1, DQA1, and DQB1 genes in 178 central European patients with Systemic lupus erythematosus (SLE) using polymerase chain reaction and Dig-ddUTP labeled oligonucleotides. Increased frequencies of DRB1*02 and *03 are confirmed by DNA typing. In addition, the frequencies of DQA1*0501, *0102 and DQB1*0201, *0602 alleles are increased in the patients as compared to controls. The strongest association to SLE is found with DRB1*03 and DQB1*0201 alleles (p<10–7, p corr. <10–5 and p<10–6, p corr. <10–4, respectively). By investigating the DQA1 promoter region in the SLE patients we have detected nine different QAP variants. Increased frequencies of QAP1.2 and QAP4.1 are observed in patients as compared to controls (p <0.05, p corr. = n. s.). Analysis of linkage disquilibria demonstrates a very strong association between QAP variants and DQA1, DRB1 alleles. Certain QAP variants are completely associated with DQA1 and DRB1 alleles, whereas others can combine with different DQA1 and DRB1 alleles. All DRB1*02-positive patients and controls carry QAP1.2, and all DRB1*03-positive patients and controls carry QAP4.1. Conversely, the QAP1.2 variant appears only in DRB1*02 haplotypes, while the QAP4.1 variant can be observed in DRB1*03, *11, and *1303 haplotypes. Based on the strong linkage disequilibria between DRB1-DQA1-DQB1 genes and between DRB1-QAP-DQA1, we have deduced the four-point haplotypes for DRB1-QAP-DQA1-DQB1 in patients and controls. Two haplotypes DRB1*02-QAP1.2-DQA1*0102-DQB1*0602-and DRB1*03-QAP4.1-DQA1*0501-DQB1*0201 are significantly increased in patient as compared to controls (p<0.01, p corr. = n.s., RR = 1.8 and p <10–7, p corr. <10–5, RR = 3.1, respectively). The analysis of relative risks attributed to the various alleles of QAP, DQA1, and DQB1 as well as the investigation of the deduced DRB1-QAP-DQA1-DQB1 haplotypes leads to the conclusion that QAP4.1 and DQA1*0501 on the DR3 haplotypes are probably not involved in SLE susceptibility. There is no evidence for the involvement of DQ2 / dimers coded in transposition. Thus, susceptibility to SLE is on the DR3 haplotype most probably localized at DRB1 or telomeric of DRB1, while for the DR2 haplotype such orientation cannot be given. SLE study group members: M. Baur, A. Corvetta, H. Ehrfeld, J. Frey, J. R. Kalden, F. Krapf, B. Lang, G. G. Lange, K. Pirner, C. Rittner, E. Röther, P. Schneider, H. P. Seelig, S. Seuchter, W. Stangel, C. Specker, P. Späth, H. Deicher. Correspondence to: Z. Yao.  相似文献   

12.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.  相似文献   

13.
We report here our analysis of HLA class II alleles in 180 Caucasian nuclear families with at least two children with insulin-dependent diabetes mellitus (IDDM). DRB1, DQA1, DQB1, and DPB1 genotypes were determined with PCR/sequence-specific oligonucleotide probe typing methods. The data allowed unambiguous determination of four-locus haplotypes in all but three of the families. Consistent with other studies, our data indicate an increase in DR3/DR4, DR3/DR3, and DR4/DR4 genotypes in patients compared to controls. In addition, we found an increase in DR1/DR4, DR1/DR3, and DR4/DR8 genotypes. While the frequency of DQB1*0302 on DR4 haplotypes is dramatically increased in DR3/DR4 patients, DR4 haplotypes in DR1/DR4 patients exhibit frequencies of DQB1*0302 and DQB1*0301 more closely resembling those in control populations. The protective effect of DR2 is evident in this data set and is limited to the common DRB1*1501-DQB1*0602 haplotype. Most DR2+ patients carry the less common DR2 haplotype DRB1*1601-DQB1*0502, which is not decreased in patients relative to controls. DPB1 also appears to play a role in disease susceptibility. DPB1*0301 is increased in patients (P < .001) and may contribute to the disease risk of a number of different DR-DQ haplotypes. DPB1*0101, found almost exclusively on DR3 haplotypes in patients, is slightly increased, and maternal transmissions of DRB1*0301-DPB1*0101 haplotypes to affected children occur twice as frequently as do paternal transmissions. Transmissions of DR3 haplotypes carrying other DPB1 alleles occur at approximately equal maternal and paternal frequencies. The complex, multigenic nature of HLA class II-associated IDDM susceptibility is evident from these data.  相似文献   

14.
Using the polymerase chain reaction (PCR) and hybridization with oligonucleotide probes, we analyzed the distribution of DPB1 alleles in 99 healthy unrelated individuals from the city of Guangzhou (Canton), South China. Twelve different DPB1 alleles were found in this panel. The most common allele was DPB1*0501 (62.6%). Other major alleles detected included DPB1*02 (DPB1*0201 and DPB1*0202), DPB1*1301, DPB1*0401, and a recently described allele, designated DPB1*2101. The hybridization pattern of DPB1*2101 showed that this allele shared sequences with DPB1*0301 and DPB1*0601 in the A and F hypervariable regions, while the C, D, and E regions were identical to those of DPB1*0202. DPB1*2101 was observed in 11% of the subjects tested. It was found to be in strong linkage dis-equilibrium with DRB1*1202. In family studies, segregation of the haplotype DRB1*1202, DRB3*0301, DQA1*0601, DQB1*0301, DPB1*2101 was observed. The second exon of DPB1*2101 was sequenced from codon 8 to codon 90 and the sequence, inferred from the pattern of hybridization, was confirmed. DPB1*0301, DPB1*0402, DPB1*0101, DPB1*1401, DPB1*1901, and another recently recognized allele, now designated DPB1*2401, were detected with low frequencies. DPB1*2401 had the same hybridization pattern as DPB1*0501 except for a probe that matches codons 85–90. In this region, DPB1*2401 encoded the amino acid sequence GPMTLQ instead of EAVTLQ as in DPB1*0501.  相似文献   

15.
Generalized vitiligo is a common autoimmune disorder characterized by white patches of skin and overlying hair caused by loss of pigment-forming melanocytes from involved areas. Familial clustering of vitiligo is not uncommon, and patients and their relatives are at increased risk for a specific complex of other autoimmune diseases. Compared with sporadic vitiligo, familial vitiligo is characterized by earlier disease onset and greater risk and broader repertoire of autoimmunity, suggesting a stronger genetic component, and perhaps stronger associations with specific alleles. To determine whether the major histocompatibility complex (MHC) contributes to the familial clustering of vitiligo and vitiligo-associated autoimmune/autoinflammatory diseases, we performed case-control and family-based association analyses of HLA class II-DRB1 and -DQB1 alleles and haplotypes in affected probands and their parents from 76 European-American Caucasian families with familial vitiligo. Affected probands showed a significantly increased frequency of DRB1*04-DQB1*0301 and a significantly decreased frequency of DRB1*15-DQB1*0602 compared with a large sample of reference chromosomes. Family-based association analyses confirmed these results. Probands with DRB1*04-DQB1*0301 developed vitiligo an average of 13.32 yr earlier than probands with DRB1*15-DQB1*0602. Overall, our results indicate that specific MHC-linked genetic variation contributes to risk of familial vitiligo, although HLA does not completely explain familial clustering of vitiligo-associated autoimmune/autoinflammatory diseases.  相似文献   

16.

Background

Kazakhstan has been inhabited by different populations, such as the Kazakh, Kyrgyz, Uzbek and others. Here we investigate allelic and haplotypic polymorphisms of human leukocyte antigen (HLA) genes at DRB1, DQA1 and DQB1 loci in the Kazakh ethnic group, and their genetic relationship between world populations.

Methodology/Principal Findings

A total of 157 unrelated Kazakh ethnic individuals from Astana were genotyped using sequence based typing (SBT-Method) for HLA-DRB1, -DQA1 and -DQB1 loci. Allele frequencies, neighbor-joining method, and multidimensional scaling analysis have been obtained for comparison with other world populations. Statistical analyses were performed using Arlequin v3.11. Applying the software PAST v. 2.17 the resulting genetic distance matrix was used for a multidimensional scaling analysis (MDS). Respectively 37, 17 and 19 alleles were observed at HLA-DRB1, -DQA1 and -DQB1 loci. The most frequent alleles were HLA-DRB1*07:01 (13.1%), HLA-DQA1*03:01 (13.1%) and HLA-DQB1*03:01 (17.6%). In the observed group of Kazakhs DRB1*07:01-DQA1*02:01-DQB1*02:01 (8.0%) was the most common three loci haplotype. DRB1*10:01-DQB1*05:01 showed the strongest linkage disequilibrium. The Kazakh population shows genetic kinship with the Kazakhs from China, Uyghurs, Mongolians, Todzhinians, Tuvinians and as well as with other Siberians and Asians.

Conclusions/Significance

The HLA-DRB1, -DQA1and -DQB1 loci are highly polymorphic in the Kazakh population, and this population has the closest relationship with other Asian and Siberian populations.  相似文献   

17.
Several human genetic variants, HLA antigens and alleles are reportedly linked to post-schistosomal hepatic disorder (PSHD), but the results from these reports are highly inconclusive. In order to estimate overall associations between human genetic variants, HLA antigens, HLA alleles and PSHD, we systematically reviewed and performed a meta-analysis of relevant studies in both post-schistosomal hepatic disorder and post-schistosomal non-hepatic disorder patients. PubMed, Scopus, Google Scholar, The HuGE Published Literature database, Cochrane Library, and manual search of reference lists of articles published before July 2009 were used to retrieve relevant studies. Two reviewers independently selected articles and extracted data on study characteristics and data regarding the association between genetic variants, HLA antigens, HLA alleles and PSHD in the form of 2×2 tables. A meta-analysis using fixed-effects or random-effects models to pooled odds ratios (OR) with corresponding 95% confidence intervals were calculated only if more than one study had investigated particular variation. We found 17 articles that met our eligibility criteria. Schistosoma mansoni and Schistosoma japonicum were reported as the species causing PSHD. Since human genetic variants were only investigated in one study, these markers were not assessed by meta-analysis. Thus, only HLA-genes (a total of 66 HLA markers) were conducted in the meta-analysis. Our meta-analysis showed that human leucocyte antigens HLA-DQB1*0201 (OR=2.64, P=0.018), DQB1*0303 (OR=1.93, P=0.008), and DRB1*0901 (OR=2.14, P=0.002) alleles and HLA-A1 (OR=5.10, P=0.001), A2 (OR=2.17, P=0.005), B5 (OR=4.63, P=0.001), B8 (OR=2.99, P=0.02), and B12 (OR=5.49, P=0.005) serotypes enhanced susceptibility to PSHD, whereas HLA-DQA1*0501 (OR=0.29, P≤0.001) and DQB1*0301 (OR=0.58, P=0.007) were protective factors against the disease. We further suggested that the DRB1*0901-DQB1*0201, DRB1*0901-DQB1*0303 and A1-B8 haplotypes enhanced susceptibility to PSHD, whereas DQA1*0501-DQB1*0301 linkage decreased the risk of PSHD. The result improved our understanding of the association between the HLA loci and PSHD with regard to pathogenic or protective T-cells and provided novel evidence that HLA alleles may influence disease severity.  相似文献   

18.
HLA class I and class II alleles have been studied in 60 unrelated people belonging to Mayos ethnic group, which lives in the Mexican Pacific Sinaloa State. Mayos HLA profile was compared to other Amerindians and worldwide populations’ profile. A total of 14,896 chromosomes were used for comparisons. Genetic distances between populations, Neigbour-Joining dendrograms and correspondence analyses were performed to determine the genetic relationship among population. The new specific Mayo HLA haplotypes found are: HLA-A*02-B*35-DRB1*1406-DQB1*0301; HLA-A*02-B*48-DRB1*0404-DQB1*0302; HLA-A*24-B*51-DRB1*0407-DQB1*0302 and HLA-A*02-B*08-DRB1*0407-DQB1*0302. However, the typical Meso American HLADRB1*0407 represents a 40% of all DRB1 alleles. While common HLA characteristics are found in Amerindian distant ethnic groups, still new group specific HLA haplotypes are being found, suggesting that a common founder effect (i.e. high DRB1*0407) is noticed. Moreover, new HLA haplotypes are almost certainly appearing along time probably due to specific pathogen (?) selection for diversity. Mayo language is close to the Tarahumara one (another geographically close group); notwithstanding both groups are not genetically close according to our results, showing again the different evolution of genes and languages, which do not correlate. Finally, Sinaloa is one of the Mexican States in which more European genes are found. However, the results presented in this paper, where no European HLA genes are seen in Mayos, should have a bearing in establishing transplant programs and in HLA and disease studies.Key Words: Amerindians, HLA, mayos, mexica, nahua, transplant.  相似文献   

19.
We have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date; the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D'' = .41) with DPB1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this population.  相似文献   

20.
No significant differences were reported for the frequency of DR3-DQ2 and DR4-DQ8 haplotypes in a recent study of one of the largest cohorts worldwide of patients with isolated Addison's disease compared to patients with APS II. However, previous studies had suggested that the HLA-DQ genes, especially DQA1*0102, may be a genetic marker for resistance to autoimmune thyroid disease, which is the most frequent disease in APS II or III. Until now, HLA-DQA1 alleles have not been systematically investigated in APS. We determined the HLA-DR and HLA-DQA1 association in 112 unrelated patients with APS II (n = 29), APS III (n = 83) and 184 unrelated patients with single-component diseases without further manifestations of APS: Graves' disease (n = 70), Hashimoto's thyroiditis (n = 53), autoimmune Addison's disease (n = 15), vitiligo (n = 16) and alopecia (n = 30), and 72 healthy controls - German Caucasians - to identify possible predisposing and protective HLA class II alleles in APS. In agreement with previous studies, we detected a significantly higher frequency of DR 3 and/or DR 4 in patients with APS II and III compared to controls. In patients with APS II, we detected a significantly higher frequency of DQA1*0301 and *0501 compared to controls confirming the increased frequency of an extended HLA DRB1-*04-DQA1-*03-DQB-*03 haplotype as previously described. In contrast, only DQA1*0301 was increased in our patients with APS III compared to controls. Moreover, we detected an increased frequency of DQA1*0301 in patients with APS, whereas DQA1*0301 was only significantly elevated in alopecia in patients with single-component diseases without APS. Therefore, our results indicate an association between DQA1*0301 and APS II or III since this allele was otherwise not significantly associated with any of its component diseases except alopecia. Moreover, our data imply that the allele DQA1*0301 is a marker of increased risk for further APS manifestations in patients who suffer from an organ-specific autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号