首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome numbers for 26 different species of the generaPiper, Peperomia andPothomorphe (Piperaceae) are reported. The basic chromosome numbers are 2n = 26, x = 13 (Piper, Pothomorphe) and 2n = 22, x = 11 (Peperomia), polyploid series are characteristic forPiper andPeperomia. Piper has the smallest chromosomes and prochromosomal interphase nuclei,Peperomia the largest ones and mostly reticulate to euchromatic nuclei.Pothomorphe is intermediate in both characters. The karyomorphological differences betweenPothomorphe andPiper underline their generic separation. Interspecific size variation of chromosomes occurs inPiper andPeperomia. Infraspecific polyploidy was observed inPiper betle. C-banding reveals different patterns of heterochromatin (hc) distribution between the genera investigated. The genome evolution is discussed.  相似文献   

2.
Studies on chromosome numbers and karyotypes in Orchid taxa from Apulia (Italy) revealed triploid complements inOphrys tenthredinifera andOrchis italica. InO. tenthredinifera there is no significant difference between the diploid and the triploid karyotypes. The tetraploid cytotype ofAnacamptis pyramidalis forms 36 bivalents during metaphase I in embryo sac mother cells. Aneuploidy was noticed inOphrys bertolonii ×O. tarentina with chromosome numbers n = 19 and 2n = 38. There were diploid (2n = 2x = 36), tetraploid (2n = 4x = 72), hexaploid (2n = 6x = 108) and octoploid (2n = 8x = 144) cells in the ovary wall of the diploid hybridOphrys apulica ×O. bombyliflora. Evolutionary trends inOphrys andOrchis chromosomes are discussed.  相似文献   

3.
A ribosomal DNA region, including the entire 5.8S RNA gene and the internal transcribed spacers ITS 1 and ITS 2, was used for studying the phylogeny ofSalicaceae and the relationship betweenSalicaceae andFlacourtiaceae. The length of the ITS regions withinSalicaceae andFlacourtiaceae was similar to that found in other angiosperms. The GC content of both ITS regions was high, varying 62.7-72.2%. The most parsimonious tree clusters the wind-pollinatedChosenia bracteosa among theSalix species, suggesting that it should be included in the genusSalix. The grouping withinSalix leaves subg.Salix as paraphyletic, for which reason the subgeneric division is questionable.Populus was monophyletic and formed a sister group toSalix. The interspecific variation of the ITS sequences was very small inSalicaceae, which is in contradiction to the age of the group according to the evidence from fossil data.Idesia polycarpa fromFlacourtiaceae shows great sequence similarity withSalicaceae, but the analysis of 5.8S rDNA supports monophyly of the four species ofFlacourtiaceae sampled for this study.  相似文献   

4.
Morphological and cytological investigations as well as crossing experiments were carried out withRanunculus seguieri Vill. and 4 species of theRanunculus alpestris L. group (R. alpestris L.,R. traunfellneri Hoppe,R. bilobus Bertol.,R. crenatus Waldst. & Kit.). ForR. seguieri andR. alpestris, localities and distribution are given in addition to extensive diagnoses. A key to the species includes morphological characteristics and distribution data forR. traunfellneri, R. bilobus, andR. crenatus. New diagnostic characters are described. Crossing experiments betweenR. seguieri and the species of theR. alpestris group were unsuccessful. All 5 species have a chromosome number of 2n = 16, the record forR. bilobus is new. There is no statistically significant difference between the karyotypes ofR. seguieri andR. alpestris s. str. Nevertheless, according to morphological evidence and crossing experiments,R. seguieri is not closely related to theR. alpestris group.
  相似文献   

5.
25 populations from Turkey and one of Syria belonging to theSabulina section of the genusMinuartia have been karyologically examined. New chromosome numbers have been recorded forM. mesogitana andM. hybrida subsp.turcica, and a new variety was found in theM. hybrida complex. The origin of the taxa with n = 23 and n = 35 is discussed.
  相似文献   

6.
The chromosome numbers of nearly all species of the grass subtribesAristaveninae andAirinae from Europe and northern Africa are presented. Among theAristaveninae the genusAristavena has 2n = 14 chromosomes, whereasDeschampsia forms a polyploid series with the basic number x = 13. In the subtribeAirinae the basic number x = 7 predominates.Avenella includes a polyploid series up to dekaploidy, whilst the lowest diploid value so far known in grasses — caused by descending dysploidy — exists in the annual generaAiropsis andPeriballia with 2n = 8.From both subtribes 12 different karyotypes are described and depicted as idiograms. The basic karyotypes ofCorynephorus, Periballia andVahlodea differ from each other by different chromosome length. SAT-chromosomes in theAirinae vary somewhat. Some marker chromosomes eludicate phylogenetic relationships. Amphiplasty appears in various genera and was studied particularly in the amphidiploidAira caryophyllea. Karyological and genomatic trends are considered in relation to evolutionary strategies of annuals and perennials.The nuclear DNA content of some species has been determined cytophotometrically. In subtribeAirinae a positive correlation exists between chromosome volume, pollen diameter, and DNA content. A comparison of the duration of microsporogenesis and microgametogenesis in annual and perennial species with their nuclear DNA content has shown that a primary nucleotypic influence is not recognizable.
  相似文献   

7.
Karyomorphological comparisons were made of 16 native and cultivated species ofSelaginella in Japan. The somatic chromosome numbers are 2n=16 inS. boninensis; 2n=18 inS. doederleinii, S. helvetica, S. limbata, S. lutchuensis, S. nipponica, S. selaginoides, S. tama-montana, andS. uncinata; 2n=20 inS. biformis, S. involvens, S. moellendorffii, S. remotifolia, andS. tamariscina; 2n=30 inS. rossii; and 2n=32 inS. heterostachys. The interphase nuclei of all species examined are uniformly assigned to the simple chromocenter type. The metaphase karyotype of 2n=16 (x=8) is 8 m (=median centromeric chromosomes)+8(st+t)(=subterminal and terminal). The group of the species having 2n=18 (x=9) is heterogeneous karyomorphologically: The karyotype ofS. nipponica is 2n=18=6 m+12(st+t),S. tama-montana 10 m+2 sm(=submedian)+6(st+t), andS. uncinata 6 m+7 sm+5(st+t). Although the remaining five species have the common karyotype 8 m+4 sm+6(st+t), the values of mean chromosome length are variable. Another group of the specles having 2n=20 (x=10) is homogeneous, since all species have the same karyotypes 8 m+4 sm+8(st+t) and have similar chromosome size. The karyotype of 2n=30 is 12 m+6 sm+12(st+t) and is suggested to be a triploid of x=10, and 2n=32=16m+16(st+t), a tetraploid of x=8. Thus, three kinds of basic chromosome numbers, x=8, 9, 10 are present in JapaneseSelaginella examined, and their karyomorphological relationships are discussed.  相似文献   

8.
Karyological observations on 7 species and 2 varieties of 4 genera belonging to theChloranthaceae demonstrate the presence of three basic chromosome numbers within the family, i.e., x = 8 (Hedyosmum), 13 (Ascarina) and 15 (Chloranthus, Sarcandra). The karyomorphology ofChloranthus andAscarina is similar, whereasSarcandra andHedyosmum display unique characteristics. Both karyological aspects, i.e., chromosome number and karyomorphology, demonstrate remarkable diversity ofChloranthaceae and complex relationships between its genera. A distant affinity betweenChloranthaceae andPiperales is suggested.Presented at the XV International Botanical Congress Yokohama 1993, Symposium on Relationships and Evolution of Primitive Angiosperms: Multidisciplinary Approaches.  相似文献   

9.
Androecial development of 13 species belonging to six tribes ofFlacourtiaceae has been investigated. While inScolopieae andFlacourtieae the stamens develop centrifugally, inErythrospermeae, Oncobeae andPangieae they are initiated in a centripetal sequence or a sequence that is neither distinctly centripetal nor centrifugal. The distribution of these developmental patterns coincides with the distribution of other characters (e.g. cyanogenic compounds, salicoid leaf teeth) and therefore supports a split of the family intoFlacourtiaceae s. str. (containing theScolopieae, Homalieae, Prockieae, Flacourtieae, Casearieae andBembicieae) andKiggelariaceae (withErythrospermeae, Oncobeae andPangieae) and is in accordance with results of recentrbcL studies.  相似文献   

10.
Chromosome studies of four HimalayanTorilis species reveal a remarkable interand intraspecific differentiation of chromosome numbers and karyotypes:T. arvensis (2n = 12),T. leptophylla (2n = 12),T. Stocksiana (2n = 36) andT. japonica (2n = 16). Base numbers inTorilis are x = 6, 8, 9 and 11.  相似文献   

11.
Chromosome numbers of 42 species and 3 varieties from 24 genera of theAnnonaceae have been determined (Table 1); reports for 15 of the genera are new. Among Asian genera 2n = 14 occurs only in the specializedMezzettia, while 2n = 16 is wide-spread and also has been found inAnaxagorea with some primitive characters. 2n = 18 is reported for 11 genera, and tetraploidy (2n = 36) has been observed inPolyalthia. Therefore, an original basic number of x = 8 or x = 9 is suggested at least for the Asian genera of theAnnonaceae.—Cytotaxonomical notes on the critical speciesPolyalthia rumphii andP. affinis are given, and the new combinationNeouvaria parallelivenia (Boerl.)Okada & Ueda is proposed.  相似文献   

12.
The chromosome numbers of the five European seagrasses have been determined in material from several sites along the coasts of the Atlantic Ocean, the North Sea and the Mediterranean:Zostera marina L., 2n = 12;Z. noltii Hornem., 2n = 12;Posidonia oceanica (L.)Delile, 2n = 20;Cymodocea nodosa (Ucria)Aschers., 2n = 14, 2n = 28;Halophila stipulacea (Forsk.)Aschers., 2n = 18. The difference in chromosome morphology betweenZ. marina andZ. noltii supports the division of the genus into two subgenera.  相似文献   

13.
The chromosome numbers of several Greece species of the genusSilene L. from natural habitats are reported for the first time:S. sieberi, S. niederi, S. radicosa subsp.rechingeri, S. oligantha, S. skorpilii, S. schwarzenbergeri andS. fruticulosa. All species are diploid with 2n = 24 chromosomes, including 0, 2 or 4 SAT-chromosomes;S. niederi has B-chromosomes.
  相似文献   

14.
Chromosome counts are reported for several E. Alpine taxa ofEuphrasia sect.Euphrasia. First records of diploidy for small-flowered taxa are 2n = 22 forE. inopinata andE. sinuata, related toE. minima (4 x). Aberrant E. AlpineE. hirtella is 2 x, just as the typical W. Alpine populations of this species. Tetraploidy, 2n = 44, has been found inE. pumila, close toE. stricta (also 4 x). The limitation of ploidy levels within sect.Euphrasia to 2 x and 4 x on the chromosome base number x = 11 is confirmed.
  相似文献   

15.
Intergeneric hybridization betweenElymus anthosachnoides (2n = 28,SSYY) andPsathyrostachys huashanica (2n = 14,NN) was performed. Three hybrid plants, obtained via embryo rescue, were intermediate between the parents in morphology and developed vigorously, but were completely sterile. The mean chromosome configuration was 19.48 I + 0.76 II per cell in the hybrids at meiotic metaphase I. This result indicates thatE. anthosachnoides andP. huashanica are distantly related and that there is little or no homoeology betweenN (P. huashanica) andS orY (E. anthosachnoides) genomes.  相似文献   

16.
Chromosome numbers are polyploid, 2n = 28 inBrunellia comocladiifolia andB. mexicana, and 2n = 46 inCaryocar brasiliense, C. microcarpum andC. villosum. The chromosome are small in both genera, with a length of ca. 1,6-0,4µm. Interphase nuclei correspond to the prochromosomal and the chromocentric type, respectively. This is in conformance with the systematic placement ofBrunelliaceae intoCunoniales, and ofCaryocaraceae intoTheales. Brunellia exhibits affinities to various other orders ofRosidae (andHamamelididae), and is suggested to be primarily apetalous. On a comparative basis, the chromosome numbers found in both families are interpreted as paleopolyploid (4 x and 6 x). This apparently is in correspondence with their rather primitive features, systematic isolation, relatively depauperate status, and evidently great age.  相似文献   

17.
The genusKarschia, in the earlier sense, including saprophytes and parasites on lichens, has been thought to be a non-lichenized parallel genus of the lichen genusBuellia. Modern workers included it on the one hand inBuellia, on the other hand combined it with bitunicate ascomycetes. It is now proved thatKarschia is heterogeneous and contains but superficially similar members both of the genusBuellia of theLecanorales and of typical or masked bitunicateAscomycetes. Therefore, it can not be regarded as a link betweenLecanorales andDothideales. The type species ofKarschia belongs to theDothideales.
  相似文献   

18.
A comparison of karyotypes ofBrachyscome breviscapis (2n = 8),B. lineariloba cytodemes E (2n = 10), B (2n = 12) and C (2n = 16) suggests that these species have a homoelogous basic set of four chromosome pairs, two large pairs and two small, and that theB. lineariloba cytodemes E, B and C are related toB. breviscapis by successive additions of small chromosomes. A pronounced asynchrony of chromosome condensation between these large and small chromosomes has been observed. In the artificial hybrids betweenB. dichromosomatica (2n = 4) ×B. breviscapis, and theB. lineariloba cytodemes, theB. dichromosomatica chromosomes are similar in size and condensation behaviour to the small chromosomes ofB. breviscapis and ofB. lineariloba cytodemes E, B and C. Meiotic pairing in these hybrids also demonstrates the strong affinities between these chromosomes. It is suggested thatB. breviscapis may be of amphidiploid origin between a species with two large early condensing chromosome pairs and another,B. dichromosomatica-like species with two small late condensing pairs. It seems most likely that the additional small and late condensing chromosomes inB. lineariloba cytodemes E, B and C are derived from theB. dichromosomatica-like parent, and that each addition increases vigour, fecundity and drought tolerance, allowing these cytodemes to colonize more open and arid environments. Transmission of the univalents in the quasidiploidB. lineariloba cytodeme E was verified as being via the pollen, and not via the embryo sacs.The cytology ofBrachyscome lineariloba (Compositae, Asteroidae), 10.  相似文献   

19.
Morphometric karyotype characters were studied in 25Angelica spp. (Umbelliferae, Apioideae) and in one species of the related genusTommasinia. For three species the chromosome numbers are new. In our study the majority of the species investigated are diploids with 2n = 22, some are tetraploids with 2n = 44 (for these tetraploids also diploid cytotypes are reported in the literature). Among the diploid species,A. miqueliana has a distinct karyotype consisting of submetacentric and acrocentric chromosomes only, the remaining diploids with 2n = 22 as well as tetraploids with 2n = 44 have rather symmetrical karyotypes, consisting of metacentric and submetacentric chromosomes. The very different chromosome number 2n = 28 has been found inA. gmelinii. Its karyotype includes two distinct groups of chromosomes: 8 pairs of rather large metacentrics and submetacentrics and 6 pairs of very short and asymmetrical chromosomes. Chromosome numbers and structures appear to be useful in the taxonomy of some intrageneric taxa inAngelica.  相似文献   

20.
The chromosome numbers of several species ofZamia from Mexico are reported.Z. paucijuga, distributed from central Oaxaca to Nayarit, has been found to have 2n = 23, 25, 26, 27 and 28. 2n = 28 is the highest chromosome number yet found in the cycads. Karyotypes of this species differ principally in the number of telocentric and metacentric chromosomes present in each; 2n = 23, 25, 26, 27 and 28 were found to have 5, 3, 2, 1 and 0 metacentric and 8, 12, 14, 16 and 18 telocentric chromosomes, respectively.Z. fischeri has been found to be 2n = 16,Z. furfuracea andZ. loddigesii 2n = 18.Zamia paucijuga on the basis of morphological and ecological characteristics, is considered to be an advanced member of this genus. Chromosome and karyotype evolution inZ. paucijuga may have occurred by centromeric fission of metacentric chromosomes; the karyotypes ofZ. paucijuga are strongly asymmetrical, suggesting that they evolved recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号