首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most stains for acidic mucins are time-consuming to prepare and have poor stability. Zirconyl hematoxylin is easily prepared and works for a year or more. It is made by adding 5 ml freshly-made 0.1% aqueous sodium iodate, 400 mg zirconyl chloride oc-tahydrate, and 40 ml 25% aqueous glycerol, in that order, to 100 mg of hematoxylin in 5 ml of absolute ethanol and stirring for 5 min. Stain 10 min and do not “blue” the stain. Chlorazole black or kernechtrot and fast green are good counterstains. Zirconyl hematoxylin stains acidic mucins violet or red violet, regardless of how they are fixed. It stains the same mucins as alcian blue in mouse and sheep salivary glands. It shows goblet cells in mouse rectum as well as alcian blue. It stains the same stomach regions in a lizard as alcian blue. Like alcian blue and colloidal iron, zirconyl hematoxylin stains the mucin of cancerous prostate, but not normal prostate.  相似文献   

2.
Zirconyl hematoxylin stains acidic mucins darkly and specifically using a solution of 100 mg hematoxylin, 5 ml ethanol, 5 ml 0.5% sodium iodate, 400 mg zirconyl chloride octahydrate, and 30 ml 25% aqueous glycerol. The stain is especially advantageous for studying goblet cells and Paget cells.  相似文献   

3.
Zirconyl hematoxylin stains acidic mucins darkly and specifically using a solution of 100 mg hematoxylin, 5 ml ethanol, 5 ml 0.5% sodium iodate, 400 mg zirconyl chloride octahydrate, and 30 ml 25% aqueous glycerol. The stain is especially advantageous for studying goblet cells and Paget cells.  相似文献   

4.
Zirconyl hematoxylin stains acidic mucins darkly and specifically using a solution of 100 mg hematoxylin, 5 ml ethanol, 5 ml 0.5% sodium iodate, 400 mg zirconyl chloride octahydrate, and 30 ml 25% aqueous glycerol. The stain is especially advantageous for studying goblet cells and Paget cells.  相似文献   

5.
Brunner's glands and other neutral mucins may be stained red, brownish red, and violet, respectively, by carmine, hematoxylin, and orcein from appropriate alkaline solutions. Carmine and hematoxylin in concentrations of 0.2-1% are dissolved in 60-70% alcohol containing 1% potassium carbonate; orcein is used in a 0.2% alcoholic solution of sodium hydroxide. Staining times are 15 to 30 minutes. The stained sections are rinsed in 95% or absolute alcohol prior to xylene and mounting. The staining of these mucins is blocked by mild bromine oxidation. By using alcian blue 0.1% in 3% acetic acid for 5 minutes prior to the above stains, mucins may be characterized in the same preparation as acid, neutral or mixed.  相似文献   

6.
Brunner's glands and other neutral mucins may be stained red, brownish red, and violet, respectively, by carmine, hematoxylin, and orcein from appropriate alkaline solutions. Carmine and hematoxylin in concentrations of 0.2-1% are dissolved in 60-70% alcohol containing 1% potassium carbonate; orein is used in a 0.2% alcoholic solution of sodium hydroxide. Staining times are 15 to 30 minutes. The stained sections are rinsed in 95% or absolute alcohol prior to xylene and mounting. The staining of these mucins is blocked by mild bromine oxidation. By using alcian blue 0.1% in 3% acetic acid for 5 minutes prior to the above stains, mucins may be characterized in the same preparation as acid, neutral or mixed.  相似文献   

7.
Brunner's glands and other neutral mucins may be stained red, brownish red, and violet, respectively, by carmine, hematoxylin, and orcein from appropriate alkaline solutions. Carmine and hematoxylin in concentrations of 0.2-1% are dissolved in 60-70% alcohol containing 1% potassium carbonate; orein is used in a 0.2% alcoholic solution of sodium hydroxide. Staining times are 15 to 30 minutes. The stained sections are rinsed in 95% or absolute alcohol prior to xylene and mounting. The staining of these mucins is blocked by mild bromine oxidation. By using alcian blue 0.1% in 3% acetic acid for 5 minutes prior to the above stains, mucins may be characterized in the same preparation as acid, neutral or mixed.  相似文献   

8.
Barrett's esophagus is a precancerous condition characterized by replacement of the normal stratified squamous epithelium by a simple columnar epithelium with goblet cells that secrete an acidic mucin. As originally formulated, fresh solutions of zirconyl hematoxylin stain goblet cells poorly. An improved formula, quintupling the amount of oxidant, yields zirconyl hematoxylin solutions that stain goblet cells darkly even when fresh. The improved zirconyl hematoxylin can be used in place of alcian blue in the diagnosis of Barrett's esophagus. The ingredients of zirconyl hematoxylin are always readily available and are generally recognized as safe.  相似文献   

9.
Aqueous solutions of a number of biological stains were completely decontaminated to the limit of detection using Amberlite resins. Amberlite XAD-16 was the most generally applicable resin but Amberlite XAD-2, Amberlite XAD-4, and Amberlite XAD-7 could be used to decontaminate some solutions. Solutions of acridine orange, alcian blue 8GX, alizarin red S, azure A, azure B, Congo red, cresyl violet acetate, crystal violet, eosin B, erythrosin B, ethidium bromide, Janus green B, methylene blue, neutral red, nigrosin, orcein, propidium iodide, rose Bengal, safranine O, toluidine blue O, and trypan blue could be completely decontaminated to the limit of detection and solutions of eosin Y and Giemsa stain were decontaminated to very low levels (less than 0.02 ppm) using Amberlite XAD-16. Reaction times varied from 10 min to 18 hr. Up to 500 ml of a 100 micrograms/ml solution could be decontaminated per gram of Amberlite XAD-16. Fourteen of the 23 stains tested were found to be mutagenic to Salmonella typhimurium. None of the completely decontaminated solutions were found to be mutagenic.  相似文献   

10.
Abstract

Acid mucins have diagnostic significance for many pathological conditions, especially in certain tumors. We compared the classical pH 2.5 Alcian blue method to a new, improved zirconyl hematoxylin (IZH) method for demonstrating acid mucins using two fixatives: Bouin`s solution and 10% neutral buffered formalin (NBF). We used rabbit small intestine, large intestine and trachea. Specimens were fixed in Bouin`s solution and NBF. A total of 160 paraffin sections were prepared and stained with pH 2.5 Alcian blue and IZH. The stained acid mucins were assessed using digital image analysis software. Stained mucins were quantified for each staining procedure and fixative. No important differences were observed in acid mucin staining by either method after either fixative. The IZH method provides results as good as pH 2.5 Alcian blue and can be used to obtain reliable staining for acid mucins.  相似文献   

11.
Acid mucins have diagnostic significance for many pathological conditions, especially in certain tumors. We compared the classical pH 2.5 Alcian blue method to a new, improved zirconyl hematoxylin (IZH) method for demonstrating acid mucins using two fixatives: Bouin`s solution and 10% neutral buffered formalin (NBF). We used rabbit small intestine, large intestine and trachea. Specimens were fixed in Bouin`s solution and NBF. A total of 160 paraffin sections were prepared and stained with pH 2.5 Alcian blue and IZH. The stained acid mucins were assessed using digital image analysis software. Stained mucins were quantified for each staining procedure and fixative. No important differences were observed in acid mucin staining by either method after either fixative. The IZH method provides results as good as pH 2.5 Alcian blue and can be used to obtain reliable staining for acid mucins.  相似文献   

12.
The staining method developed by Christian Gram was introduced as a simple and highly selective tool for demonstrating myxosporean and coccidian sporogonic stages. When using standard blood staining procedures for those enigmatic parasites it is sometimes difficult to distinguish them from fish host tissue. They clearly exhibit a partial Gram-positive reaction in histological sections, but staining is variable in air dried fish organ imprints. To visualize the Gram-negative background of different host tissue components in histological sections, the conventional safranin counterstain of the Gram protocol may be modified as follows: after application of 2% crystal violet (basic violet 3) and Lugol's solution, sections are stained with 0.1% nuclear fast red-5% aluminum sulfate and 0.35% aniline blue (acid blue 22) dissolved in saturated aqueous picric acid. Replacement of the Gram-specific dye crystal violet with 2% malachite green gave similar results in organ imprints containing myxospores or coccidia, but only in sections containing myxosporea. Staining for 1 min with an aqueous solution of 0.5% malachite green and followed 1 min washing was sufficient for rapidly demonstrating the parasite spores in organ imprints of both myxosores and oocysts. With regard to the role of acid mucopolysaccharides and other carbohydrates in the Gram reaction of spores, alcian blue 8GX staining was compared to the binding of FITC-labeled WGA, GS I and GS II. Each lectin was applied at 20 μl/ml PBS, HEPES for 1 hr. Whereas WGA yielded a nonspecific pattern like the alcian blue staining, GS II resulted in a pattern similar to the Gram staining results. This binding was weak in untreated specimens, but was significantly enhanced when digested first within trypsin overnight in a humid chamber at 37 °C. The binding of GS II to both myxosporidian and coccidian spores suggests that they are both composed of polymers containing N-acetyl-D-glucosamine residues. Furthermore, the results suggest that this hexosamine plays a key role in the Gram reaction.  相似文献   

13.
Mordant blue 3 may be used as a suhstitute for hematoxylin in hematoxylin and eosin stains. The staining solution consists of 0.25 g dye, 40 ml of 10% iron dam, 5 ml of cone H2SO4, and 955 ml of dirtilled H2O. Staining the is 5 minutes, followed by differentiation in acid water or acid alcohol. After blueing, the seaions are counterstained with emin. Results closely resemble the hematoxylin and eosin stain.  相似文献   

14.
Many batches of alcian blue dye are incompletely soluble at the low pH used for demonstrating mast cells. An improved technique using alcian blue tetrakis (methylpyridium) chloride (alcian blue pyridine variant) is described here. It produces stronger mast cell staining than other alcian blue stains tested.  相似文献   

15.
Many batches of alcian blue dye are incompletely soluble at the low pH used for demonstrating mast cells. An improved technique using alcian blue tetrakis (methylpyridium) chloride (alcian blue pyridine variant) is described here. It produces stronger mast cell staining than other alcian blue stains tested.  相似文献   

16.
The effect of a practical plant protein-based diet containing vegetable oils (VO) as the major lipid source on the mucosal carbohydrate pattern of the intestine was studied in gilthead sea bream Sparus aurata challenged with the myxosporean parasite Enteromyxum leei. Fish fed for 9 mo either a fish oil (FO) diet or a blend of VO at 66% of replacement (66VO diet) were exposed to parasite-contaminated water effluent. Samples of the anterior, middle and posterior intestine (AI, MI and PI, respectively) were obtained for parasite diagnosis and histochemistry. Fish were categorised as control (C, not exposed), early (E) or late (L) infected. Mucin and lectin histochemistry was applied to detect the different types of mucins and sialic acid in goblet cells (GC), the brush border and enterocytes. The number of GC stained with periodic acid Schiff (PAS), alcian blue (AB), aldehyde fuchsin-alcian blue (AF-AB), for the detection of neutral, acidic, sulphated and carboxylic mucins, and with the lectin Sambucus nigra agglutinin (SNA), were counted in digital images. The 66VO diet produced a significant decrease of GC with neutral and acidic mucins in the AI and MI, and also of those with carboxylic mucins and sialic acid in the MI. Sulphated mucins and sialic acid were less abundant in the AI than in the MI and PI in the C-66VO treatment. E. leei infection had a strong effect on the number of GC, as E and L infected fish had a significant decrease of GC positive for all the stains versus C fish in PI. Time and diet effects were also observed, since the lowest values were mostly registered in E-66VO fish in PI. In conclusion, though GC depletion was mainly induced by enteromyxosis, an effect of the diet was also observed. Thus, the diet can be a predisposing factor that worsens the disease course.  相似文献   

17.
A relatively simple technic giving consistent results has been evolved from Mayer's mucihematein technic1 by substituting hematoxylin for hematein and omitting the nitric acid. The hematoxylin is oxidized with sodium iodate (NaIO3).

This modification is effective on the same types of mucin as Mayer's original mucihematein. With this modified technic, mucin stains a deep violet, cell nuclei pale gray blue, and connective tissue pale gray to colorless in tissues fixed in all the more common fixatives. The modified stain retains this selectivity for at least 200 days.  相似文献   

18.
Fundus of stomach is fixed in 10% formalin (aqueous), Bouin's fluid or 5% trichloracetic acid (aqueous). It is embedded in paraffin, and 7μ sections are cut, mounted, deparaffinized and passed to 70% alcohol and then stained as follows: Mordant 3 min. in saturated Bismarck brown in 70% alcohol. Rinse in 70% alcohol, pass to distilled water, then overstain (2 hr.) in aniline blue, 0.5% solution in 2.5% acetic acid (aqueous). Precipitate the anilin blue with 0.5 ml. of 0.1% methyl violet solution (aqueous) dropped on die slide. Leave on 2 min. or less. Wash and differentiate in 70% alcohol. (Parietal cells dark blue). Stain 30 min. in a mixture of hematein, 0.10g.; A1C13 cryst., 0.05g.; and 70% alcohol 50 ml., prepared just before use and not filtered. Rinse in 70% alcohol and differentiate with an alcoholic extract of saffron (2 g. saffron pistils in 100 ml. 90% alcohol at 60°C. for 6 hr.) while observing the progress of differentiation microscopically. Dehydrate by dropping a 0.1 % solution of acetic acid in absolute alcohol on the section for 30 sec., followed by pure absolute alcohol, xylene, and covering in balsam.  相似文献   

19.
Fundus of stomach is fixed in 10% formalin (aqueous), Bouin's fluid or 5% trichloracetic acid (aqueous). It is embedded in paraffin, and 7μ sections are cut, mounted, deparaffinized and passed to 70% alcohol and then stained as follows: Mordant 3 min. in saturated Bismarck brown in 70% alcohol. Rinse in 70% alcohol, pass to distilled water, then overstain (2 hr.) in aniline blue, 0.5% solution in 2.5% acetic acid (aqueous). Precipitate the anilin blue with 0.5 ml. of 0.1% methyl violet solution (aqueous) dropped on die slide. Leave on 2 min. or less. Wash and differentiate in 70% alcohol. (Parietal cells dark blue). Stain 30 min. in a mixture of hematein, 0.10g.; A1C13 cryst., 0.05g.; and 70% alcohol 50 ml., prepared just before use and not filtered. Rinse in 70% alcohol and differentiate with an alcoholic extract of saffron (2 g. saffron pistils in 100 ml. 90% alcohol at 60°C. for 6 hr.) while observing the progress of differentiation microscopically. Dehydrate by dropping a 0.1 % solution of acetic acid in absolute alcohol on the section for 30 sec., followed by pure absolute alcohol, xylene, and covering in balsam.  相似文献   

20.
TO determine the amount of K2Cr2O7 required to produce optimal Giemsa type staining, six 1 g amounts (corrected for dye content) of zinc methylene blue were oxidized with graded quantities of K2Cr2O7 to produce 4, 8, 12, 16, 20 and 24% conversion of methylene blue to azure B. These were heated with a blank control 15 minutes at 100 C in 60-65 ml 0.4 N HCI. cooled, and adjusted to 50 ml to give 20 mg original dye/ml. Aliquots were then diluted to 1% and stains were made by the “Wet Giemsa” technic (Lillie and Donaldson 1979) using 6 ml 1% polychrome methylene blue, 4 ml 1% cosin (corrected for dye content), 2 ml 0.1 M pH 6.3 phosphate buffer, 5 ml acetone, and 23 ml distilled water. The main is added last and methanol fixed blood films are stained immediately for 20-40 min.

For methylene blue supplied by MCB 12-H-29, optimal stains were obtained with preparations containing 20 and 24% conversion of methylene blue to azure B. With methylene blue supplied by Aldrich (080787), 16% conversion of methylene blue to azure B was optimal. Eosinates prepared from a low azure B/methylene blue preparation selected in this way give good stains when used as a Wright stain in 0.3% methanol solution. However, when the 600 mg eosinate solution in glycerol methanol is supplemented with 160 mg of the same azure B/methylene blue chloride the mixture fails to perform well. The HCI precipitation of the chloride apparently produces the zinc methylene blue chloride salt which is poorly soluble in alcohol. It appears necessary to have a zinc-free azure B/methylene blue chloride to supplement the probably zinc-free eosinate used in the Giemsa mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号