首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The current study was intended to evaluate the hepatoprotective effect of Epicatechin (EC) against radiation-induced oxidative stress, in terms of inflammation and lipid peroxidation. Swiss albino mice were administered with EC (15 mg/kg body weight) for three consecutive days before exposing them to a single dose of 5-Gy (60)Co gamma (γ) irradiation. Mice were necropsied and livers were taken for immunohistochemistry, western blot analysis and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were increased whereas the activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content and ferric reducing antioxidant power (FRAP) were diminished upon radiation exposure compared to control. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited whereas an increase in SOD, CAT, GSH and FRAP was observed in the mice treated with EC prior to irradiation. Thus, pre-treatment with EC offers protection against γ-radiation induced hepatic alterations.  相似文献   

2.
AimsThe present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation.Main methodsMale Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10 mg/kg) or F (100 mg/kg) and both (10 and 100 mg/kg) for 8 weeks. The control mice (C) were fed with normal diet.Key findingsThe H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed.SignificanceSimultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS + F combination along with HFD has shown outstanding effects as compared to other treated groups.  相似文献   

3.
BackgroundThe aim of this study was to determine the levels of lipid peroxidation (MDA) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the blood serum of patients with cirrhosis and liver transplantation.MethodsIn this study, serum malondialdehyde acid (MDA) levels, superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activities were measured spectrophotometrically and compared to the results of the healthy control group.ResultsSOD, CAT and GSH activities were significantly decreased in the patient groups compared to the healthy control group (p<0.05). MDA levels were significantly higher in the patient group compared to the healthy control group (p <0.05).ConclusionsIn conclusion, this study demonstrated that oxidative stress may play an important role in the development of liver cirrhosis and in liver transplantation. This study is the first one to show how MDA, SOD, CAT and GSH levels change in liver cirrhosis and liver transplantation, while further studies are essential to investigate antioxidant enzymes and oxidative stress status in patients with cirrhosis and liver transplantation.  相似文献   

4.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

5.
《Reproductive biology》2022,22(3):100671
Oxidative stress plays a central role in polycystic ovary syndrome (PCOS). Catalpol (CAT) is the active ingredient of Rehmannia glutinosa Libosch which has therapeutic effect on PCOS. However, little is known about the mechanism of CAT in PCOS. PCOS rats were induced by subcutaneous injection of dehydroepiandrosteronec for four weeks and then were treated with CAT (50 mg/kg) or carboxyl methyl cellulose (the solvent of CAT) or normal saline for another 4 weeks. Histopathological observation of ovarian tissues, the levels of testosterone, estradiol and progesterone in rat plasma samples, the oxidative stress related-indexes and the expressions of NF-κB pathway-related proteins were determined. KGN cell (human ovarian granulosa cell line) was used as PCOS cell model and was transfected with siSIRT1 in the presence of CAT. The viability, proliferation and apoptosis of cells and the levels of SIRT1 and NF-κB pathway-related proteins were measured. CAT lessened the anthropometric indices and improved ovarian damage in PCOS model rats, and reduced the levels of testosterone, estradiol, progesterone and MDA, increased GSH content, and elevated the activities of catalase, GSH-Px and SOD in ovarian tissues of PCOS model rats. CAT up-regulated SIRT1 level and inhibited the activation of NF-κB signaling pathway in PCOS rat model and KGN cells. Silencing SIRT1 increased the viability and proliferation, whilst decreased the apoptosis of CAT-treated KGN cells. Silencing SIRT1 counteracted the effect of CAT on the level of oxidative stress-related factors and NF-κB signaling pathway in KGN cells. CAT attenuated PCOS by regulating SIRT1 mediated NF-κB signaling pathway.  相似文献   

6.
《Free radical research》2013,47(8):854-863
Abstract

N-3 polyunsaturated fatty acids (n-3 PUFA) affect inflammatory processes. This study evaluated the effects of dietary supplementation with fish oil on hepatic ischemia-reperfusion (IR) injury in the rat. Parameters of liver injury (serum transaminases and histology) and oxidative stress (serum 8-isoprostanes and hepatic GSH and GSSG), were correlated with NF-κB DNA binding and FA composition and inflammatory cytokine release. N-3 PUFA supplementation significantly increased liver n-3 PUFA content and decreased n-6/n-3 PUFA ratios. IR significantly modified liver histology and enhanced serum transaminases, 8-isoprotanes and inflammatory cytokines, with net reduction in liver GSH levels and net increment in those of GSSG. Early increase (3 h) and late reduction (20 h) in NF-κB activity was induced. All IR-induced changes were normalized by n-3 PUFA supplementation. In conclusion, prevention of liver IR-injury was achieved by n-3 PUFA supplementation, with suppression of oxidative stress and recovery of pro-inflammatory cytokine homeostasis and NF-κB functionality lost during IR.  相似文献   

7.
Fluoride compounds are known as hazardous environmental pollutants that can enter the body with drinking water. Chronic exposure to fluoride leads to development of oxidative stress and can lead to activation of nuclear factor κB (NF-κB). The aim of this work is to clarify the role of NF-kB activation in production of reactive nitrogen and oxygen species, activity of antioxidant enzymes and intensity of lipid peroxidation (LPO) in gastric mucosa of rats during chronic fluoride intoxication.Materials and methodsWe carried out the study on 18 mature male rats of the Wistar line. The animals were divided into 3 groups: control animals (6), group of chronic fluoride intoxication (6), and animals (6), which received the NF-κB inhibitor, namely ammonium pyrrolidine dithiocarbamate (PDTC) in a dose of 76 mg / kg (iNF-κB group) during modeling of chronic fluoride intoxication. To assess the development of oxidative stress we studied superoxide production (O2-), activity of superoxide dismutase (SOD), catalase (CAT) and concentration of free malondialdehyde (MDA). We also assessed NO production and concentration of its metabolites (peroxynitrite, nitrosilated thiol groups, nitrites).ResultsChronic fluoride intoxication leads to NO hyperproduction with subsequent increase in concentration of its later metabolites (peroxynitrite, nitrosilated thiol groups, nitrites). Production of O2- increases, SOD activity decreases, CAT activity increases and MDA concentration also increases. Inhibition of NF-kB activation by PDTC normalizes the parameters studied.ConclusionsActivation of NF-κB during chronic fluoride intoxication leads to the development of hyperproduction of NO and development of oxidative-nitrosative stress.  相似文献   

8.
9.
Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.  相似文献   

10.
Min AK  Kim MK  Kim HS  Seo HY  Lee KU  Kim JG  Park KG  Lee IK 《Life sciences》2012,90(5-6):200-205
AimsNon-alcoholic steatohepatitis (NASH) is a liver disease that causes fat accumulation, inflammation and fibrosis. Increased oxidative stress contributes to hepatic inflammation and fibrosis by upregulation of Cytochrome P450 2E1 (CYP2E1), endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) activity. This study examined whether alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents steatohepatitis through the inhibition of several pathways involved in hepatic inflammation and fibrosis.Main MethodsC57BL/6 mice were fed an MCD diet with or without ALA for 4 weeks. Liver sections from mice on control or MCD diets with or without ALA were stained with hematoxylin-eosin, oil red O, and anti-4-HNE antibody. The effects of ALA on methionine-choline deficient MCD-diet induced plasma AST and ALT as well as tissue TBARS were measured. The effects of ALA on CYP2E1 expression, ER stress, MAPK levels, and NF-κB activity in MCD diet-fed mice liver were measured by northern and western blot analysis.Key findingsDietary supplementation with ALA reduced MCD diet-induced hepatic lipid accumulation, hepatic inflammation, TBARS, 4-HNE, and plasma ALT and AST levels. These effects were associated with a reduced expression of CYP2E1 and reduced ER stress and MAPK and NF-κB activity.SignificanceTaken together, the results of the present study indicate that ALA attenuates steatohepatitis through inhibition of several pathways, and provide the possibility that ALA can be used to prevent the development and progression of non-alcoholic fatty liver disease in patients who have strong risk factors for NASH.  相似文献   

11.
12.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

13.
Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30?mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.  相似文献   

14.
Kumar A  Negi G  Sharma SS 《Biochimie》2012,94(5):1158-1165
Inflammation is an emerging patho-mechanism of diabetes and its complications. NF-κB pathway is one of the central machinery initiating and propagating inflammatory responses. The present study envisaged the involvement of NF-κB inflammatory cascade in the pathophysiology of diabetic neuropathy using BAY 11-7082, an IκB phosphorylation inhibitor. Streptozotocin was used to induce diabetes in Sprauge Dawley rats. BAY 11-7082 (1 &; 3 mg/kg) was administered to diabetic rats for 14 days starting from the end of six weeks post diabetic induction. Diabetic rats developed deficits in nerve functions and altered nociceptive parameters and also showed elevated expression of NF-κB (p65), IκB and p-IκB along with increased levels of IL-6 &; TNF-α and inducible enzymes (COX-2 and iNOS). Furthermore, there was an increase in oxidative stress and decrease in Nrf2/HO-1 expression. We observed that BAY 11-7082 alleviated abnormal sensory responses and deficits in nerve functions. BAY 11-7082 also ameliorated the increase in expression of NF-κB, IκB and p-IκB. BAY 11-7082 curbed down the levels of IL-6, TNF-α, COX-2 and iNOS in the sciatic nerve. Lowering of lipid peroxidation and improvement in GSH levels was also seen along with increased expression of Nrf2/HO-1. Thus it can be concluded that NF-κB expression and downstream expression of proinflammatory mediators are prominent features of nerve damage leading to inflammation and oxidative stress and BAY 11-7082 was able to ameliorate experimental diabetic neuropathy by modulating neuroinflammation and improving antioxidant defence.  相似文献   

15.
目的:以小鼠肾脏细胞中的活性氧(ROS)、丙二醛(MDA)、谷胱甘肽(GSH)含量和超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活力为指标,探讨全氟辛烷磺酸钾(PFOS-K)对小鼠肾脏的氧化性损伤作用。方法:以剂量为6mg/kg·bw、12 mg/kg·bw、24 mg/kg·bw 3个浓度的PFOS-K混悬液,每天分别给小鼠经口灌胃一次,连续染毒20天后检测肾脏脏器系数,以及肾脏中ROS、MDA、GSH含量的变化和SOD、GSH-Px、CAT活性的改变。结果:与阴性对照组相比,在6-24 mg/kg·bw剂量范围内,PFOS-K使小鼠体重下降、肾脏重量增加、肾脏脏器系数增大,且表现出一定的剂量-效应关系(r小鼠体重=-0.905,r肾脏湿重=0.938,r脏器系数=0.936)。PFOS-K使小鼠肾脏内活性氧(ROS)及丙二醛(MDA)含量增多(rROS=0.990,rMDA=0.997)、谷胱甘肽(GSH)含量减少(rGSH=-0.994),超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活力降低(rSOD=-0.917,rGSH-Px=-0.986,rCAT=-0.991)。结论:本试验条件下,PFOS-K致使小鼠肾脏肿大,影响了肾脏的发育;造成了肾脏的氧化性损伤,肾组织内抗氧化酶系统遭到破坏,氧化应激反应增强,具有氧化损伤作用。  相似文献   

16.
Abstract

Objective: Multiple pregnancy is associated with an enhanced metabolism and demand for O2, which may lead to the overproduction of reactive oxygen species and the development of oxidative stress. The degree of oxidative damage depends on the level of the antioxidant protection system of the foetus. The objective of the study was to identify the relationship between the state of the maturity and the antioxidant status of twin neonates. Investigations of the umbilical cord blood were carried out to detect differences in the antioxidant defence system between mature and premature twin neonates.

Methods: The activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes, the levels of reduced glutathione (GSH), protein carbonyls and oxidized lipids and the total antioxidant capacity of the plasma were determined.

Results: The level of lipid peroxidation was significantly higher in the premature neonates. An increase in the total antioxidant capacity was accompanied by a decrease in the damaged protein concentration. Significantly elevated activities of GPx alone were observed in the premature twins, though the GSH content too tended to be increased. The activity of SOD was decreased in the premature neonates.

Discussion: The antioxidant status of twin neonates are mainly influenced by maturity. We suggest that the level of lipid peroxidation might be of clinical value as a marker of pre- and perinatal distress in twins.  相似文献   

17.
《Free radical research》2013,47(12):1426-1442
Abstract

Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP5+), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP3?), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP3? was not. Here, for the first time, in a complex in vivo system—animal model of spinal cord injury—a similar impact of MnTBAP3?, at a dose identical to that of MnTnHex-2-PyP5+, was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP3? with reactive nitrogen species (RNS) (.NO/HNO/ONOO?) suggests that RNS/MnTBAP3?-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP5+ which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.  相似文献   

18.
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFα in mice. We evaluated the role of nitrosative and oxidative stress and the NF-κB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFα plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFα plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2?/? mice treated with TNFα plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFα plus PY-treated NOS2?/? mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKα/β protein levels were decreased by TNFα plus PY treatment, whereas IκBα and IκBβ protein levels were elevated compared with saline, PY, or TNFα alone. NF-κB DNA binding activity was increased by TNFα alone but lowered by TNFα plus PY. All these changes were blocked by 1400W and NAC. NF-κB activation products such as Bcl-2, Bcl-XL, cFLIPS, cFLIPL, and Mn-SOD were reduced by TNFα plus PY and restored by 1400W or NAC. We conclude that TNFα plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-κB activation pathways and the synthesis of protective factors to cause liver injury.  相似文献   

19.
Oxidative stress caused by excessive reactive species (RS) and lipid peroxidation is known to be casually linked to age-related inflammation. To test the hypothesis that fish oil (FO) intake has a beneficial effect on nephritis due to its suppressive action of oxidative stress and the enhancement of antioxidant defenses, we examined the effect of dietary FO on various oxidative stress-related parameters and guanidino compound (GC) levels using (NZB × NZW) F1 (B/W) mice. These mice were fed diets supplemented with either 5% corn oil (control) or 5% FO. At 4 and 9 months of age, the hepatic oxidative status was estimated by assessing RS generation produced from xanthine oxidase, the prostaglandin pathway and lipid peroxidation. To evaluate the effect of FO on redox status, including antioxidant defenses, GSH and GSSG levels and antioxidant enzyme activities were measured. To correlate the extent of oxidative status with the nephritic condition, creatinine, guanidino acetic acid and arginine levels were measured. Results indicated that increased levels of lipid peroxidation, RS generation and xanthine oxidase activity with age were all significantly suppressed by FO feeding. Furthermore, reduced GSH levels, GSH/GSSG ratio and antioxidant enzyme activities in the FO-fed mice were effectively enhanced compared to the corn oil-fed mice. Among several GCs, the age-related increase of creatinine level was blunted by FO. Based on these results, we propose that dietary FO exerts beneficial effects in aged, nephritic mice by suppressing RS, superoxide and lipid peroxidation, and by maintaining a higher GSH/GSSG ratio and antioxidant enzyme activities.  相似文献   

20.
The effect of salinity on the antioxidative system of root mitochondria and peroxisomes of a cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) was studied. Salt stress induced oxidative stress in Lem mitochondria, as indicated by the increased levels of lipid peroxidation and H(2)O(2). These changes were associated with decreased activities of superoxide dismutase (SOD) and guaiacol peroxidases (POD) and contents of ascorbate (ASC) and glutathione (GSH). By contrast, in mitochondria of salt-treated Lpa plants both H(2)O(2) and lipid peroxidation levels decreased while the levels of ASC and GSH and activities of SOD, several isoforms of ascorbate peroxidase (APX), and POD increased. Similarly to mitochondria, peroxisomes isolated from roots of salt-treated Lpa plants exhibited also decreased levels of lipid peroxidation and H(2)O(2) and increased SOD, ascorbate peroxidase (APX), and catalase (CAT) activities. In spite of the fact that salt stress decreased activities of antioxidant enzymes in Lem peroxisome, oxidative stress was not evident in these organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号