首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
BackgroundHydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue.MethodsUsing confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ΔΨm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells.ResultsWe found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ΔΨm-sensitive probe JC-1, which accumulates and aggregates only in ‘energised’ negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ΔΨm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production.ConclusionsWhile analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ΔΨm is required.General significanceIf not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies.  相似文献   

2.
Fluorescent protein based signaling probes are emerging as valuable tools to study cell signaling because of their ability to provide spatio- temporal information in non invasive live cell mode. Previously, multiple fluorescent protein probes were employed to characterize key events of apoptosis in diverse experimental systems. We have employed a live cell image based approach to visualize the key events of apoptosis signaling induced by zerumbone, the active principle from ginger Zingiber zerumbet, in cancer cells that enabled us to analyze prominent apoptotic changes in a hierarchical manner with temporal resolution. Our studies substantiate that mitochondrial permeabilisation and cytochrome c dependent caspase activation dominate in zerumbone induced cell death. Bax activation, the essential and early event of cell death, is independently activated by reactive oxygen species as well as calpains. Zerumbone failed to induce apoptosis or mitochondrial permeabilisation in Bax knockout cells and over-expression of Bax enhanced cell death induced by zerumbone confirming the essential role of Bax for mitochondrial permeabilsation. Simultaneous inhibition of reactive oxygen species and calpain is required for preventing Bax activation and cell death. However, apoptosis induced by zerumbone was prevented in Bcl 2 and Bcl-XL over-expressing cells, whereas more protection was afforded by Bcl 2 specifically targeted to endoplasmic reticulum. Even though zerumbone treatment down-regulated survival proteins such as XIAP, Survivin and Akt, it failed to affect the pro-apoptotic proteins such as PUMA and BIM. Multiple normal diploid cell lines were employed to address cytotoxic activity of zerumbone and, in general, mammary epithelial cells, endothelial progenitor cells and smooth muscle cells were relatively resistant to zerumbone induced cell death with lesser ROS accumulation than cancer cells.  相似文献   

3.
Abstract

We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extra-mitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extra-mitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.  相似文献   

4.
《Free radical research》2013,47(8):1029-1043
Abstract

HLE, a human hepatocellular carcinoma cell line was transiently transfected with normal human MnSOD and MnSOD without a mitochondrial targeting signal (MTS). Mitochondrial reactive oxygen species (ROS), lipid peroxidation and apoptosis were examined as a function of time following 18.8 Gy X-ray irradiation. Our results showed that the level of mitochondrial ROS increased and reached a maximum level 2 hours after X-ray irradiation. Authentic MnSOD, but not MnSOD lacking MTS, protected against mitochondrial ROS, lipid peroxidation and apoptosis. In addition, the levels of mitochondrial ROS were consistently found to always correlate with the levels of authentic MnSOD in mitochondria. These results suggest that only when MnSOD is located in mitochondria is it efficient in protecting against cellular injuries by X-ray irradiation and that mitochondria are the critical sites of X-ray-induced cellular oxidative injuries.  相似文献   

5.
Mitochondria-selective fluorescent probes such as MitoTracker are often used for mitochondria imaging in various plants. Although some of the probes are reported to induce mitochondria dysfunction in animal cells, the effect on plant cells remains to be determined. In the present study, we applied quantitative methods to analyze mitochondrial movement, speed frequency, and speed-angle changes, based on trajectory analysis of mitochondria in mesophyll protoplast cells of Arabidopsis thaliana expressing the mitochondria-localized fluorescent protein. Using the quantitative method, we assessed whether MitoTracker Red (FM and CMXRos) induce mitochondria dysfunction in A. thaliana. Although both the fluorescent probes well-stained mitochondria, the CMXRos probe, not the FM probe, gave a severe effect on mitochondrial movement at the low concentration (10 nM), indicating a MitoTracker-induced mitochondria dysfunction in A. thaliana. These results revealed that our quantitative method based on mitochondrial movement can be used to determine the appropriate concentrations of mitochondria-selective fluorescent probes in plants.  相似文献   

6.
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes.  相似文献   

7.
Classically, mitochondria have been studied by biochemical, genetic and electron microscopic approaches. In the last two decades, it became evident that mitochondria are highly dynamic organelles that are frequently dividing and fusing, changing size and shape and traveling long distances throughout the life of a cell. The study of the complex structural changes of mitochondria in vivo became possible with the advent of fluorescent labeling techniques in combination with live cell imaging microscopy. This review aims to provide an overview on novel fluorescent markers that are used in combination with mitochondrial fusion assays and various live cell microscopy techniques to study mitochondrial dynamics. In particular, approaches to study the movement of mitochondrial proteins and novel imaging techniques (FRET imaging-, 4Pi- and STED-microscopy) that provide high spatial resolution are considered.  相似文献   

8.
The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 – Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP – LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.  相似文献   

9.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

10.
BACKGROUND: Mitochondria are key players in many forms of cell death, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes, and release of apoptogenic proteins are involved in these processes. Flow cytometric analysis of isolated mitochondria enables parallel analysis of mitochondrial structure and function in individual mitochondria, and small mitochondrial samples are sufficient for analysis. This article describes a well-characterized protocol for flow cytometric analysis of isolated liver mitochondria that can be used to detect mitochondrial alterations relevant to cell death. METHODS: Fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), and to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide), as well as production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). Calcium-induced mitochondrial swelling was detected as a decrease in SSC. To ensure optimal concentrations of all probes, the effect on mitochondrial respiration was evaluated. RESULTS: This protocol can be used to determine the purity of the mitochondrial preparation, to detect calcium-induced morphological changes, small mitochondrial de- and hyperpolarizations, as well as physiological changes in ROS generation. CONCLUSIONS: Flow cytometry is a very useful tool to simultaneously analyze several mitochondrial parameters that are important in the induction of mitochondria-mediated cell death.  相似文献   

11.
12.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

13.
Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic β-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in β-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in β-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat β-cells.  相似文献   

14.
《Free radical research》2013,47(8):936-949
Abstract

Mitochondrial DNA plays an important role in cellular sensitivity to cancer therapeutic agents. Hoechst 33342, a DNA minor groove binding ligand, has shown radiosensitizing effects in different cancer cell lines. In the present study, the possible binding of Hoechst 33342 with mitochondrial DNA, isolated from human cerebral glioma (BMG-1) cells, was investigated and consequences of this binding on excessive reactive oxygen species (ROS) generation in irradiated BMG-1 cells were studied. Alteration in the fluorescence spectroscopic characteristics of Hoechst 33342 suggested binding of Hoechst 33342 with isolated mitochondria and mitochondrial DNA. Persistent increase in level of ROS in the presence of Hoechst 33342 has been observed, which was further enhanced in irradiated cells. Investigations using inhibitors of ETC complex I suggested that mitochondrial bound Hoechst 33342 contributed to increased ROS, which was associated with alteration in ΔΨm and antioxidant machinery. These factors appeared to contribute in potentiating radiation-induced cell death in BMG-1 cells. The finding from these studies will be useful in designing better anti-cancer strategies.  相似文献   

15.
We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extra-mitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extra-mitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.  相似文献   

16.
Peroxisome proliferators have been found to induce hepatocarcinogenesis in rodents, and may cause mitochondrial damage. Consistent with this, clofibrate increased hepatic mitochondrial oxidative DNA and protein damage in mice. The present investigation aimed to study the mechanism by which this might occur by examining the effect of clofibrate on freshly isolated mouse liver mitochondria and a cultured hepatocyte cell line, AML-12. Mitochondrial membrane potential (Delta Psi(m)) was determined by using the fluorescent dye 5,5',6,6'-tetrachloro-1,1', 3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) and tetramethylrhodamine methyl ester (TMRM). Application of clofibrate at concentrations greater than 0.3 mM rapidly collapsed the Delta Psi(m) both in liver cells and in isolated mitochondria. The loss of Delta Psi(m) occurred prior to cell death and appeared to involve the mitochondrial permeability transition (MPT), as revealed by calcein fluorescence studies and the protective effect of cyclosporin A (CsA) on the decrease in Delta Psi(m). Levels of reactive oxygen species (ROS) were measured with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (DCFDA) and dihydrorhodamine 123 (DHR123). Treatment of the hepatocytes with clofibrate caused a significant increase in intracellular and mitochondrial ROS. Antioxidants such as vitamin C, deferoxamine, and catalase were able to protect the cells against the clofibrate-induced loss of viability, as was CsA, but to a lesser extent. These results suggest that one action of clofibrate might be to impair mitochondrial function, so stimulating formation of ROS, which eventually contribute to cell death.  相似文献   

17.
Intracellular production of reactive oxygen species (ROS) plays an important role in the control of cell physiology. For the assessment of intracellular ROS production, a plethora of fluorescent probes is commonly used. Interestingly, chemical structures of these probes imply they could be substrates of plasma membrane efflux pumps, called ABC transporters. This study tested whether the determination of intracellular ROS production and mitochondrial membrane potential by selected fluorescent probes is modulated by the expression and activity of ABC transporters. The sub-clones of the HL-60 cell line over-expressing MDR1, MRP1 and BCRP transporters were employed. ROS production measured by luminol- and L-012-enhaced chemiluminescence and cytochrome c reduction assay showed similar levels of ROS production in all the employed cell lines. It was proved that dihydrorhodamine 123, dihexiloxocarbocyanine iodide, hydroethidine, tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide and tetramethylrhodamine ethyl ester perchlorate are substrates for MDR1; dichlorodihydrofluoresceine, hydroethidine and tetramethylrhodamine ethyl ester perchlorate are substrates for MRP1; dichlorodihydrofluoresceine, dihydrorhodamine 123, hydroethidine and tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide are substrates for BCRP. Thus, the determination of intracellular ROS and mitochondrial potential by the selected probes is significantly altered by ABC transporter activities. The activity of these transporters must be considered when employing fluorescent probes for the assessment of ROS production or mitochondrial membrane potential.  相似文献   

18.
Protein labeling techniques using small molecule probes have become important as practical alternatives to the use of fluorescent proteins (FPs) in live cell imaging. These labeling techniques can be applied to more sophisticated fluorescence imaging studies such as pulse-chase imaging. Previously, we reported a novel protein labeling system based on the combination of a mutant β-lactamase (BL-tag) with coumarin-derivatized probes and its application to specific protein labeling on cell membranes. In this paper, we demonstrated the broad applicability of our BL-tag technology to live cell imaging by the development of a series of fluorescence labeling probes for this technology, and the examination of the functions of target proteins. These new probes have a fluorescein or rhodamine chromophore, each of which provides enhanced photophysical properties relative to coumarins for the purpose of cellular imaging. These probes were used to specifically label the BL-tag protein and could be used with other small molecule fluorescent probes. Simultaneous labeling using our new probes with another protein labeling technology was found to be effective. In addition, it was also confirmed that this technology has a low interference with respect to the functions of target proteins in comparison to GFP. Highly specific and fast covalent labeling properties of this labeling technology is expected to provide robust tools for investigating protein functions in living cells, and future applications can be improved by combining the BL-tag technology with conventional imaging techniques. The combination of probe synthesis and molecular biology techniques provides the advantages of both techniques and can enable the design of experiments that cannot currently be performed using existing tools.  相似文献   

19.
20.
Reactive oxygen species (ROS) are formed upon incomplete reduction of molecular oxygen (O2) as an inevitable consequence of mitochondrial metabolism. Because ROS can damage biomolecules, cells contain elaborate antioxidant defense systems to prevent oxidative stress. In addition to their damaging effect, ROS can also operate as intracellular signaling molecules. Given the fact that mitochondrial ROS appear to be only generated at specific sites and that particular ROS species display a unique chemistry and have specific molecular targets, mitochondria-derived ROS might constitute local regulatory signals. The latter would allow individual mitochondria to auto-regulate their metabolism, shape and motility, enabling them to respond autonomously to the metabolic requirements of the cell. In this review we first summarize how mitochondrial ROS can be generated and removed in the living cell. Then we discuss experimental strategies for (local) detection of ROS by combining chemical or proteinaceous reporter molecules with quantitative live cell microscopy. Finally, approaches involving targeted pro- and antioxidants are presented, which allow the local manipulation of ROS levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号