首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of Bacillus licheniformis l-arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support−1) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q m) and affinity (k a). The pH and temperature for immobilization were optimized to be pH 7.1 and 33°C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k cat/K m) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t 1/2 increased from 2 to 275 h) at 50°C following immobilization.  相似文献   

2.
To avoid the unwanted and random covalent linkage between the cross-linker and enzyme's active site in covalent immobilization, a genetically encoded “aldehyde tag” was introduced into recombinant lipase and applied for the one-step purification and covalent immobilization of this enzyme. The effects of the immobilization time, temperature and the amount of enzyme were investigated, and the thermo-stability of immobilized lipase was also examined. The specific activity and the kcat/Km of the immobilized lipase using aldehyde tag (IL-AT) were 2.50 and 3.02 fold higher, respectively, than those of the traditionally immobilized lipase using glutaraldehyde (IL-GA). The newly immobilized lipase also presented better thermo-stability than the traditionally immobilized one. The results show that the recombinant enzyme could be conveniently immobilized without glutaraldehyde and that the enzyme's active site was well protected. This is a new immobilization method able to avoid glutaraldehyde or 2,4,6-trichloro-1,3,5-triazine as an activating agent. The greener method without hazardous chemicals for the one-step purification and immobilization of an enzyme using a genetically encoded “aldehyde tag” can be exploited for numerous other enzyme purification and immobilization applications.  相似文献   

3.

Objectives

To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA).

Results

In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l?1 (GlyDH/LDH) and 2.2 g l?1 (GlyDH/LpNox1) with total turnover number (TTN) of NAD+ recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH–LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l?1 to DHA at 0.2–0.5 g l?1 in the presence of zero to 2 mM exogenous NAD+. The cell free extract of E. coli (GlyDH–LpNox) converted glycerol (2–50 g l?1) to DHA from 0.5 to 4.0 g l?1 (8–25 % conversion) without exogenous NAD+.

Conclusions

The disadvantage of the expensive consumption of NAD+ for the production of DHA has been overcome.
  相似文献   

4.
An efficient β-1,4-glucosidase (BGL) secreting strain, Agaricus arvensis, was isolated and identified. The relative molecular weight of the purified A. arvensis BGL was 98 kDa, as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis, or 780 kDa by size exclusion chromatography, indicating that the enzyme is an octamer. Using a crude enzyme preparation, A. arvensis BGL was covalently immobilized onto functionalized silicon oxide nanoparticles with an immobilization efficiency of 158%. The apparent V max (k cat) values of free and immobilized BGL under standard assay conditions were 3,028 U mg protein−1 (4,945 s−1) and 3,347 U mg protein−1 (5,466 s−1), respectively. The immobilized BGL showed a higher optimum temperature and improved thermostability as compared to the free enzyme. The half-life at 65 °C showed a 288-fold improvement over the free BGL. After 25 cycles, the immobilized enzyme still retained 95% of the original activity, thus demonstrating its prospects for commercial applications. High specific activity, high immobilization efficiency, improved stability, and reusability of A. arvensis BGL make this enzyme of potential interest in a number of industrial applications.  相似文献   

5.
Enhanced catalytic activities of different lignocellulases were obtained from Armillaria gemina under statistically optimized parameters using a jar fermenter. This strain showed maximum xylanase, endoglucanase, cellobiohydrolase, and β-glucosidase activities of 1,270, 146, 34, and 15 U mL?1, respectively. Purified A. gemina xylanase (AgXyl) has the highest catalytic efficiency (k cat/K m?=?1,440 mg?mL?1?s?1) ever reported for any fungal xylanase, highlighting the significance of the current study. We covalently immobilized the crude xylanase preparation onto functionalized silicon oxide nanoparticles, achieving 117 % immobilization efficiency. Further immobilization caused a shift in the optimal pH and temperature, along with a fourfold improvement in the half-life of crude AgXyl. Immobilized AgXyl gave 37.8 % higher production of xylooligosaccharides compared to free enzyme. After 17 cycles, the immobilized enzyme retained 92 % of the original activity, demonstrating its potential for the synthesis of xylooligosaccharides in industrial applications.  相似文献   

6.
D-Lactate dehydrogenase (D-LDH) from Pediococcus pentosaceus ATCC 25745 was found to produce D-3-phenyllactic acid from phenylpyruvate. The optimum pH and temperature for enzyme activity were pH 5.5 and 45 °C. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat?K m) values for the substrate phenylpyruvate were estimated to be 1.73 mmol/L, 173 s?1, and 100 (mmol/L)?1 s?1 respectively.  相似文献   

7.
Abstract

Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ-, δ- and ζ-CAs are ubiquitous metalloenzymes present in prokaryotes and eukaryotes. CAs started to be investigated in detail only recently in pathogenic bacteria, in the search for antibiotics with a novel mechanism of action, since it has been demonstrated that in many such organisms they are essential for the life cycle of the organism. CA inhibition leads to growth impairment or growth defects in several pathogenic bacteria. The microbiota of the human oral mucosa consists of a myriad of bacterial species, Porphyromonas gingivalis being one of them and the major pathogen responsible for the development of chronic periodontitis. The genome of P. gingivalis encodes for a β- and a γ-CAs. Recently, our group purified the recombinant γ-CA (named PgiCA) which was shown to possess a significant catalytic activity for the reaction that converts CO2 to bicarbonate and protons, with a kcat of 4.1?×?105?s?1 and a kcat/Km of 5.4?×?107?M?1?×?s?1. We have also investigated its inhibition profile with a range of inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate. Here, we describe the cloning, purification and kinetic parameters of the other class of CA identified in the genome of P. gingivalis, the β-CA, named PgiCAb. This enzyme has a good catalytic activity, with a kcat of 2.8?×?105?s?1 and a kcat/Km of 1.5?×?107?M?1?×?s?1. PgiCAb was also inhibited by the clinically used sulfonamide acetazolamide, with an inhibition constant of 214?nM. The role of CAs as possible virulence factors of P. gingivalis is poorly understood at the moment but their good catalytic activity and the fact that they might be inhibited by a large number of compounds, which may pave the way for finding inhibitors with antibacterial activity that may elucidate these phenomena and lead to novel antibiotics.  相似文献   

8.
Semisynthetic cephalosporins, the best-selling antibiotics worldwide, are derived from 7-aminocephalosporanic acid (7-ACA). Currently, in the pharmaceutical industrie, 7-ACA is mainly produced from cephalosporin C by sequential application of D -amino acid oxidase and cephalosporin acylase. Here we study the potential of industrially amenable enzyme γ-glutamyltranspeptidase from Bacillus subtilis for 7-ACA production, since the wild-type γ-glutamyltranspeptidase of B. subtilis has inherent glutaryl-7-aminocephalosporanic acid acylase activity with a kcat value of 0.0485 s-1. Its activity has been enhanced by site directed and random mutagenesis. The kcat/Km value was increased to 3.41 s-1 mM-1 for a E423Y/E442Q/D445N mutant enzyme and the kcat value was increased to 0.508 s-1 for a D445G mutant enzyme. Consequently, the catalytic efficiency and the turnover rate were improved up to about 1000-fold and 10-fold, compared with the wildtype γ-glutamyltranspeptidase of B. subtilis.  相似文献   

9.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO2 hydration reaction were measured. With a kcat/Km of 1.1?×?108 M?1 s?1, and a kcat of 1.3?×?106 s?1, clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with KIs in the range of 1.9–3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

10.
A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co2+ affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20?°C and pH of 8.3: kcat of 4.8?×?105?s?1 and kcat/Km of 5.6?×?107 M?1?×?s?1. This activity was potently inhibited by acetazolamide which showed a KI of 78.9?nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.  相似文献   

11.
Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: kcat = 0.13 ± 0.02 min ? 1 and Ks = 0.67 ± 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (kcat = k2). Though the aryl acylamidase activity of albumin is low (kcat/Ks = 195 M? 1min? 1), because of its high concentration in human plasma (0.6–1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.  相似文献   

12.
Bisphosphoglycerate synthase from horse red cells has been purified to apparent homogeneity by a simple and efficient new procedure incorporating chromatography on a column of Sepharose 4B derivatized with blue dextran. The enzyme is similar to the human red cell synthase in subunit size. It is phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form a phosphoenzyme with the acid-lability of a histidyl phosphate. In addition to the synthase activity (glycerate-1,3-P2 → glycerate-2,3-P2), kcat 12.5 s?1, the enzyme has bisphosphoglycerate phosphatase activity in the presence of glycolate-2-P (glycerate-2,3-P2 → glycerate-P + Pi), kcat 2.6 s?1 and phosphoglycerate mutase activity (3-PGA ? 2-PGA), kcat 1.7 s?1. The energy of activation for the synthase reaction is 9.38 kcal/mol. Lineweaver-Burk plots of the kinetic data are parallel lines. In contrast intersecting patterns were obtained from similar experiments done with the human red cell enzyme. Further investigation is required to explain these differences. This enzyme may function as both synthase and phosphatase for bisphosphoglycerate in the red blood cell.  相似文献   

13.
An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS–PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K m of 0.85 μM. The k cat and k cat?K m values were 13 s?1 and 15 s?1 μM?1 respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K i, of 25 pM.  相似文献   

14.
15.
Aldehyde dehydrogenase ST0064, the closest paralog of previously characterized allosteric non-phosphorylating glyceraldehyde-3-phosphate (GAP) dehydrogenase (GAPN, ST2477) from a thermoacidophilic archaeon, Sulfolobus tokodaii, was expressed heterologously and characterized in detail. ST0064 showed remarkable activity toward succinate semialdehyde (SSA) (K m of 0.0029 mM and k cat of 30.0 s?1) with no allosteric regulation. Activity toward GAP was lower (K m of 4.6 mM and k cat of 4.77 s?1), and previously predicted succinyl-CoA reductase activity was not detected, suggesting that the enzyme functions practically as succinate semialdehyde dehydrogenase (SSADH). Phylogenetic analysis indicated that archaeal SSADHs and GAPNs are closely related within the aldehyde dehydrogenase superfamily, suggesting that they are of the same origin.  相似文献   

16.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

17.
Polymers and copolymers of horseradish root peroxidase (HRP) and Penicillium funiculosum 46.1 glucose oxidase (GO) have been synthesized and their catalytic properties have been characterized (free and immobilized forms of each enzyme were studied). The cooxidation reaction of phenol and 4-aminoantipyrin (4-AAP), performed in an aqueous medium in the presence of equimolar amounts of GO and HRP, was characterized by effective K M and k cat of 0.58 mM and 20.9 s?1 (for phenol), and 14.6 mM and 18.4 s?1 (glucose), respectively. The catalytic efficiency of polymerization products (PPs) of GO (GO-PPs) depended on the extent of their aggregation. The combinations GO + HRP-PP and HRP + GO-PP, as well as the copolymer HRP*-GO-PP, proved promising as reagents for enzyme-based analytical systems. When adsorbed on aluminum hydroxide gels, GO-PPs exhibited higher catalytic activity than the non-polymeric enzyme. Maximum retention of GO-PP activity on the inorganic carrier was observed in the case of GO-PP copolymers with an activated HRP. Polymerization of HRP in the presence of a zinc hydroxide gel, paralleled by HRP-PP immobilization onto the gel, increased both the activity of the enzyme and its operational stability.  相似文献   

18.
The tetrameric β-xylosidase from Selenomonas ruminantium is very stable in alkaline pH allowing it to easily immobilize by multipoint covalent attachments on highly activated glyoxyl agarose gels. Initial immobilization resulted only in slight stabilization in relation to the free enzyme, since involvement of all subunits was not achieved. Coating the catalyst with aldehyde-dextran or polyethylenimine, fully stabilized the quaternary structure of the enzyme rendering much more stabilization to the biocatalyst. The catalyst coated with polyethylenimine of molecular weight 1300 is the most stable one exhibiting an interesting half-life of more than 10 days at pH 5.0 and 50?°C, being, therefore, 240-fold more stable than free enzyme. Optimum activity was observed in the pH range 4.0–6.0 and at 55?°C. The catalyst retained its side activity against p-nitrophenyl α-l-arabinofuranoside and it was inhibited by xylose and glucose. Kinetic parameters with p-nitrophenyl β-d-xylopyranoside as substrate were Vmax 0.20?μmol.min?1?mg?prot.?1, Km 0.45?mM, Kcat 0.82?s?1, and Kcat/Km 1.82?s?1?mM?1. Xylose release was observed from the hydrolysis of xylooligosaccharides with a decrease in the rate of xylose release by increasing substrate chain-length. Due to the high thermostability and the complete stability after five reuse cycles, the applicability of this biocatalyst in biotechnological processes, such as for the degradation of lignocellulosic biomass, is highly increased.  相似文献   

19.
We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32?kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat?=??4.2?×?105?s?1 and kcat/Km of 3.5?×?107?M?1 ×s?1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50?kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.  相似文献   

20.
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200‐μm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His6‐tagged enzymes via Ni‐NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop‐flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK‐catalysed synthesis of L ‐erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis–Menten model. Results show that the TK kinetic parameters in the IEMR (Vmax(app) = 0.1 ± 0.02 mmol min–1, Km(app) = 26 ± 4 mM) are comparable with those measured in free solution. Furthermore, the kcat for the microreactor of 4.1 × 105 s?1 was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His6‐immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell‐based systems for TK bioprocess characterization. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号