首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Lipases are enzymes that usually hydrolyze acylglycerols, but will hydrolyze the carboxylic esters in many other compounds. They also catalyze esteriftcations and transesterifications. In addition to specificity for carboxylic esters, the lipases are selective for lipid classes and show selectivity for primary vs. secondary alcohols (positional or regio-), fatty acids, enantiomers (chirality of either the acid or alcohol residue) and combinations of these. Uses of the enzymes have depended to some extent on regio- and fatty acid selectivities. Newer applications, such as ester synthesis and asymmetric hydrolysis, may not be based on selectivities. Factors affecting selectivities are discussed and some areas for research are mentioned.  相似文献   

2.
Petucci C  Di L  McConnell O 《Chirality》2007,19(9):701-705
Thirty-five enzymes were rapidly screened for their ability to selectively hydrolyze chiral esters to their corresponding carboxylic acids for the efficient generation of chiral intermediates in drug discovery. Optimization of the enzymatic reactions at various incubation times was performed using a robotic liquid handler. Enantiomeric pairs of chiral esters and carboxylic acids were then analyzed simultaneously by chiral GC/MS in a single analysis. This analytical approach is particularly useful for compounds that do not possess a conjugated chromophore or are volatile and difficult to analyze by chiral HPLC/UV or HPLC/MS. The resulting data was used to determine enantiomeric excesses and percent conversions to the desired enantiomer of the carboxylic acid for the selection of efficient enzymes for bioconversions in drug discovery in a pharmaceutical company.  相似文献   

3.
The biocatalytic stereoselective hydrolysis of 2-hydroxy-3-nitropropionic acid esters was studied. Forty enzymes and three hundred microorganism strains were examined for their ability to hydrolyze ethyl 2-hydroxy-3-nitropropionic acid. Nocardia globerula IFO13150 gave n-butyl (R)-2-hydroxy-3-nitropropionate with a 92% enantiomeric excess (ee) and the corresponding carboxylic acid with a 92%ee, which was easily converted to (S)-isoserine, a useful beta-amino acid.  相似文献   

4.
The biocatalytic stereoselective hydrolysis of 2-hydroxy-3-nitropropionic acid esters was studied. Forty enzymes and three hundred microorganism strains were examined for their ability to hydrolyze ethyl 2-hydroxy-3-nitropropionic acid. Nocardia globerula IFO13150 gave n-butyl (R)-2-hydroxy-3-nitropropionate with a 92% enantiomeric excess (ee) and the corresponding carboxylic acid with a 92%ee, which was easily converted to (S)-isoserine, a useful β-amino acid.  相似文献   

5.
A methodology for regio- and stereoselective preparation of acyl glycerol derivatives is presented. It offers easy access to specific 1,2-, 1,3-diglycerides and triglycerides as well as alkyl glycerol esters, phospholipids and glycolipids. These compounds are prepared by esterification of the corresponding glycerol derivatives such as 2-monoglycerides, alkyl glycerols, glyceryl glycosides, glyceryl phosphate esters, or unsubstituted glycerol. The regio- and stereoselectivity in the esterification is achieved by using fatty acid anhydrides and an enzymatic catalyst, 1,3-specific lipase. NMR methods for determining the regio- and stereoselectivity of esterification are discussed.  相似文献   

6.
The hydroxyl groups of poly(ethyleneglycol) have been esterified (partly) with a number of carboxylic acids. When these esters are included in dextranpoly(ethyleneglycol)-water biphasic systems the partitions of proteins and membranes between the two phases (and the interface) are in some cases strongly affected. The affinity of serum albumin for the poly(ethyleneglycol)-rich phase is strongly increased when the fatty acid group consists of more than 10 carbon atoms. The partition also depends on the number of double bonds in the fatty acid. A corresponding relationship is found for membranes from spinach chloroplasts. The partitions of ovalbumin, lysozyme (EC 3.2.1.17) and ribonuclease (EC 3.1.4.22) are not influenced by the fatty acid esters. Esters of dibasic carboxylic acids show a minute but marked effect on the partition of proteins in general while malate and tartrate esters affect strongly the partition of chloroplast membranes. The partitions of both proteins and membranes are influenced by poly(ethyleneglycol) deoxycholate. Experiments with malate dehydrogenase (EC 1.1.1.37), lactate dehydrogenase (EC 1.1.1.27), fumarase (EC 4.2.1.2), enolase (EC 4.2.1.11) and glutamate-oxaloacetate transaminase (EC 2.6.1.1) show that their partitions, measured on enzymic activity basis, is changed when esters of benzoic, linolenic, tartaric or deoxycholic acid are included in the biphasic system. The mechanism behind the effect of the esterified poly(ethyleneglycol) on the partition of biomaterial, in this type of aqueous biphasic systems, is discussed in terms of a direct binding of the esters to the partitioned material.  相似文献   

7.
The carboxylesterases (EC 3.1.1.x) are widely distributed and form an important yet diverse group of hydrolases catalysing the ester bond cleavage in a variety of substrates. Besides acting on plant cell wall components like cutin, tannin and feruloyl esters, they are often the first line of defence to metabolize drugs, xenobiotics, pesticides, insecticides and plastic. But for the promiscuity of some carboxylesterases and cutinases, very few enzymes act exclusively on aromatic carboxylic acid esters. Infrequent occurrence of aromatic carboxylesterases suggests that aromatic carboxylesters are inherently more difficult to hydrolyse than the regular carboxylesters because of both steric and polar effects. Naturally occurring aromatic carboxylesters were rare before the anthropogenic activity augmented their environmental presence and diversity. An appraisal of the literature shows that the hydrolysis of aromatic carboxylic esters is a uniquely difficult endeavour and hence deserves special attention. Enzymes to hydrolyse such esters are evolving rapidly in nature. Very few such enzymes are known and they often display much lower catalytic efficiencies. Obviously, the esters of aromatic carboxylic acids, including polyethylene terephthalate waste, pose an environmental challenge. In this review, we highlight the uniqueness of aromatic carboxylesters and then underscore the importance of relevant carboxylesterases.  相似文献   

8.
Dicarboxylic acids are formed by omega-oxidation of fatty acids in the endoplasmic reticulum and degraded as the CoA ester via beta-oxidation in peroxisomes. Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids, implying that acyl-CoA thioesterases (ACOTs), which hydrolyze CoA esters to the free acid and CoASH, are needed for the release of the free acids. Recent studies show that peroxisomes contain several acyl-CoA thioesterases with different functions. We have now expressed a peroxisomal acyl-CoA thioesterase with a previously unknown function, ACOT4, which we show is active on dicarboxylyl-CoA esters. We also expressed ACOT8, another peroxisomal acyl-CoA thioesterase that was previously shown to hydrolyze a large variety of CoA esters. Acot4 and Acot8 are both strongly expressed in kidney and liver and are also target genes for the peroxisome proliferator-activated receptor alpha. Enzyme activity measurements with expressed ACOT4 and ACOT8 show that both enzymes hydrolyze CoA esters of dicarboxylic acids with high activity but with strikingly different specificities. Whereas ACOT4 mainly hydrolyzes succinyl-CoA, ACOT8 preferentially hydrolyzes longer dicarboxylyl-CoA esters (glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA). The identification of a highly specific succinyl-CoA thioesterase in peroxisomes strongly suggests that peroxisomal beta-oxidation of dicarboxylic acids leads to formation of succinate, at least under certain conditions, and that ACOT4 and ACOT8 are responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids.  相似文献   

9.
Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.  相似文献   

10.
A putative fatty acid specificity of bile salt-dependent lipases (BSDLs) has been re-investigated. The strategy was to use two evolutionally distant, homologous BSDLs (from human and cod), and to investigate their hydrolysis of different fatty acid esters at different assay conditions affecting the physicochemical phase of the substrate. Depending on assay conditions, large variations were seen in the hydrolysis rate for esters of different fatty acids. The two enzymes displayed similar fatty acid specificity patterns, with small, but significant differences that were maintained at various assay conditions. Compared to the human enzyme, the cod enzyme showed a preference for hydrolysis of long-chain polyunsaturated fatty acyl esters (up to 22 carbons in length). On the other hand, the human enzyme hydrolysed esters of shorter chain saturated fatty acids at significantly higher rates compared to the cod enzyme. Changing physicochemical factors affecting the substrate phase induced large changes in fatty acid specificity that affected both enzymes in similar manners. It is concluded that though the aliphatic chains of the fatty acids may not be recognized by the enzymes, these chains indirectly affect the conformation or interfacial availability of the carboxyl ester bond in the substrate, and the enzymes show minor specificities for variations in these structures.  相似文献   

11.
An acyl coenzyme A hydrolase (thioesterase II) has been purified to near homogeneity from lactating rat mammary gland. The enzyme is a monomer of molecular weight 33,000 and contains a single active site residue. The enzyme is specific for acyl groups, as acyl-CoA thioesters, containing eight or more carbon atoms and can also hydrolyze oxygen esters. Thioesterase II is capable of shifting the product specificity of rat mammary gland fatty acid synthetase from predominately long chain fatty acids (C14, C16, and C18) to mainly medium chain fatty acids (C8, C10, and C12). Thioesterase II can restore the capacity for fatty acid synthesis to fatty acid synthetase in which the thioesterase component (thioesterase I) has been inactivated with phenylmethanesulfonyl fluoride or removed by trypsinization. No evidence was found of significant levels of thioesterase II in lactating rat liver. The presence of thioesterase II in the lactating mammary gland and the ability of the enzyme to hydrolyze acyl-fatty acid synthetase thioesters of intermediate chain length, are indicative of a major role for this enzyme in the synthesis of the medium chain fatty acids characteristic of milk fat.  相似文献   

12.
Lipases and esterases are hydrolytic enzymes and are known to hydrolyze esters with unique substrate specificity and acyl chain length selectivity. We have developed a simple competitive multiple substrate assay for determination of acyl chain length selectivity of lipases/esterases using RP-HPLC with UV detection. A method for separation and quantification of 4-nitrophenyl fatty acid esters (C4–C18) was developed and validated. The chain length selectivity of five lipases and two esterases was determined in a multisubstrate reaction system containing equimolar concentrations of 4-nitrophenyl esters (C4–C18). This assay is simple, reproducible, and a useful tool for determining chain length selectivity of lipases/esterases.  相似文献   

13.
This investigation was carried out to develop methods for a reverse-phase, high-performance liquid chromatography analysis of the monocarboxylic and dicarboxylic acids produced by permanganate-periodate oxidation of monoenoic fatty acids. Oxidation reactions were performed using [U-14C]oleic acid and [U-14C]oleic acid methyl ester in order to measure reaction yields and product distributions. The 14C-labeled oxidation products consisted of nearly equal amounts of monocarboxylic and dicarboxylic acid (or dicarboxylic acid monomethyl ester), with few side products (yield greater than 98%). Conversion of the carboxylic acids to phenacyl esters proceeded to completion. HPLC of carboxylic acid phenacyl esters was performed using a C18 column with a linear solvent gradient beginning with acetonitrile/water (1/1) and ending with 100% acetonitrile. Excellent resolution was achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid phenacyl esters. Resolution was also achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid monomethyl, monophenacyl esters. The resolution obtained by HPLC demonstrates that, for a wide range of monoenoic fatty acids, both products of a permanganate-periodate oxidation can be identified on a single chromatogram. Free fatty acids and fatty acid methyl esters were analyzed with equal success. Neither the oxidation nor the esterification reaction caused detectable hydrolysis of methyl ester. The method is illustrated for free acids and methyl esters of 14:1 (cis-9), 16:1 (cis-9), 18:1 (cis-6), 18:1 (cis-9), and 18:1 (cis-11).  相似文献   

14.
Abstract— —Selectivity in the esterification of fatty acids to lysolecithin by rat-brain enzymes in vitro was investigated using free fatty acids (activation plus esterification) and CoA esters (esterification) of two naturally-occurring monoenoic fatty-acid isomers, oleic acid [18:1 (n - 9)] and cis-vaccenic acid [18:1 (n - 7)]. Esterification of free acids to l-acyl-sn-glycero-3-phosphorylcholine (1-acyl GPC) was dependent on CoA and ATP, and was stimulated by MgCl2 and NaF. Under comparable conditions, fatty-acid activation (acyl-CoA synthetase [acid: CoA ligase (AMP)] EC 6.2.1.3.) appeared to be rate-limiting to 1-acyl GPC acyltransferase (acyl-CoA:l-acylglycero-3-phosphocholine O-acyltrans-ferase, EC 2.3.1.23.), since rates were always less with free fatty acids than with the CoA esters. A comparison of substrate curves obtained with free fatty acids and CoA esters suggests a preference for oleic acid during activation. Acyltransferase activity with 2-acyl GPC was similar with both acyl-CoA isomers, whereas with 1-acyl GPC, activity with oleoyl-CoA consistently exceeded that with cis-vaccenoyl-CoA. This difference between patterns of selectivity in esterification of positions 1 and 2 of lecithin suggests that separate enzymes catalyze the two reactions. The transfer of the isomers to the 2 position was affected in a similar manner by changes in pH and temperature, as well as in protein, fatty acid (or acyl-CoA), and 1-acyl GPC concentrations. Patterns of incorporation with simultaneous incubation of both isomers suggests one enzyme. Differences in acyltransferase activity with the two isomerie acyl-CoA's were observed in subcellular distribution, activity changes with brain maturation, and loss of activity on preincubation of microsomes at 45C. From these results it is not certain whether oleic and cis-vaccenic acids are esterified to the 2 position by separate enzymes, or by one enzyme with different affinities for the isomers. However, the investigation clearly indicates that acyltransferases, and possibly acyl-CoA synthetases in brain possess selectivity related to subtle differences in double-bond position. These selectivities probably are important in determining the specific fatty-acid composition of the complex lipids of brain.  相似文献   

15.
ABSTRACT

Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.  相似文献   

16.
Carboxylic ester hydrolases of rat pancreatic juice   总被引:3,自引:0,他引:3  
An attempt was made to establish the number and characteristics of the enzymes in pancreatic juice that hydrolyze nitrogen- and phosphorus-free esters of fatty acids. For this purpose model compounds were hydrolyzed by lyophilized rat pancreatic juice under conditions that accelerated or inhibited the reactions. Although it is not established with certainty, it is suggested that three enzymes are responsible for the hydrolysis of fatty acid esters. The first enzyme is glycerol-ester hydrolase (EC 3.1.1.3) or lipase. This enzyme hydrolyzes water-insoluble esters of primary alcohols. The reaction occurs at an oil/water interface and is inhibited by bile salts at pH 8. The enzyme is relatively stable at pH 9, but unstable at pH 4. It has a broad pH optimum between 7.5 and 9.5. The second enzyme hydrolyzes esters of secondary alcohols and of other alcohols as well. It has an absolute requirement for bile salts and has a pH optimum at about 8. The enzyme is unstable in pancreatic juice when maintained at pH 9, probably due to the action of trypsin. It may be identical with sterol-ester hydrolase (EC 3.1.1.13). The third enzyme hydrolyzes water-soluble esters. It too has an absolute requirement for bile salts, although a smaller amount is necessary for maximum activity. This enzyme also is unstable at pH 9, but can be differentiated from the preceding enzyme by its stability at pH 4 and its pH optimum of 9.0. Carboxylic-ester hydrolase (EC 3.1.1.1) is not found in pancreatic juice, although it is present in pancreatic tissue.  相似文献   

17.
A recently discovered enzyme in the mandelate pathway of Pseudomonas putida, mandelamide hydrolase (MAH), catalyzes the hydrolysis of mandelamide to mandelic acid and ammonia. Sequence analysis suggests that MAH is a member of the amidase signature family, which is widespread in nature and contains a novel Ser-cis-Ser-Lys catalytic triad. Here we report the expression in Escherichia coli, purification, and characterization of both wild-type and His(6)-tagged MAH. The recombinant enzyme was stable, exhibited a pH optimum of 7.8, and was able to hydrolyze both enantiomers of mandelamide with little enantiospecificity. The His-tagged variant showed no significant change in kinetic constants. Phenylacetamide was found to be the best substrate, with changes in chain length or replacement of the phenyl group producing greatly decreased values of k(cat)/K(m). As with another member of this family, fatty acid amide hydrolase, MAH has the uncommon ability to hydrolyze esters and amides at similar rates. MAH is even more unusual in that it will only hydrolyze esters and amides with little steric bulk. Ethyl and larger esters and N-ethyl and larger amides are not substrates, suggesting that the MAH active site is very sterically hindered. Mutation of each residue in the putative catalytic triad to alanine resulted in total loss of activity for S204A and K100A, while S180A exhibited a 1500-fold decrease in k(cat) and significant increases in K(m) values. Overall, the MAH data are similar to those of fatty acid amide hydrolase and support the suggestion that there are two distinct subgroups within the amidase signature family.  相似文献   

18.
Escherichia coli subjected to cold osmotic shock released 30 to 40% of their fatty acid esters and 42% of their cellular hexosamine. In contrast, Enterobacter, although they released 40% of fatty acid esters, release only 25% of hexosamine. Proteus released less than 15% of either fatty acid esters or hexosamine. These differences are taken to explain the differences among the Enterobacteriaceae in releasing surface enzymes after osmotic shock. It is felt that the release of additional lipopolysaccharide after osmotic shock is necessary for the release of surface enzymes that are not freed by ethylenediaminetetraacetic acid-tris(hydroxymethyl)aminomethane exposure.  相似文献   

19.
The following processes are discussed in this article: enzyme-catalysed hydrolyses of carboxylic acid esters and amides, phosphate esters, nitriles and epoxides; esterification and inter-esterification reactions catalysed by enzymes; reduction of ketones to secondary alcohols using whole-cell systems or isolated dehydrogenases; oxidation of alicyclic and aromatic substrates using mono-oxygenases and dioxygenases in bacteria and fungi including enzyme-catalysed Baeyer-Villiger oxidations; aldol reactions, formation of optically active cyanohydrins and enzyme-catalysed acyloin type reactions. The use of these biocatalytic methods for the stereo-controlled preparation of important target structures is reviewed and some of the future directions for the biotransformation area are discussed.  相似文献   

20.

Objective

To generate Candida antarctica lipase A (CAL-A) mutants with modified fatty acid selectivities and improved lipolytic activities using error-prone PCR (epPCR).

Results

A Candida antarctica lipase A mutant was obtained in three rounds of epPCR. This mutant showed a 14 times higher ability to hydrolyze triacylglycerols containing conjugated linoleic acids, and was 12 and 14 times more selective towards cis-9, trans-11 and trans-10, cis-12 isomers respectively, compared to native lipase. Lipolytic activities towards fatty acid esters were markedly improved, in particular towards butyric, lauric, stearic and palmitic esters.

Conclusion

Directed molecular evolution is an efficient method to generate lipases with desirable selectivity towards CLA isomers and improved lipolytic activities towards esters of fatty acids.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号